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Introduction: Overview

• The Rarefied Gas Dynamics, or free molecular flow, describes the 
fluid dynamics of gas where the mean free path (λ) of the 
molecules  is larger than the size (d) of the chamber under test: 

Knudsen number Kn =
𝜆

𝑑
> 1. 

• The Poiseuille Flow is a laminar pressure-induced flow in a channel 
of length l and width d, with 𝑙 ≫ 𝑑.

• The Thermal Creep Flow is a flow of a slightly rarefied gas caused by 
the temperature gradient along a wall.

4



Introduction: Goal

• To show the capability of Theory of Functional Connections 
(TFC) [1] in solving RGD problems with high accuracy.

• The problems studied are based on the BGK model of the 
integro-differential Boltzmann Transport Equation for 
particles.

5[1] Mortari, D. (2017). The theory of connections: Connecting points. Mathematics, 5(4), 57.
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Transport Theory for Rarefied Gas Dynamics

• Solving Boltzmann Transport Equations for Rarefied Gas 
Dynamics is generally hard and computationally expensive

– No direct analytical solutions except in very limited cases

• Methods to solve Boltzmann Transport Equations 
generally are

– Semi-analytical

▪ High accuracy in limited cases

– Numerical

▪ Hard implementation
7

𝑢
𝜕

𝜕𝜏
𝑌 𝜏, 𝑢 + 𝑌 𝜏, 𝑢 = න

−∞

∞

Ψ 𝑢 𝑌 𝜏, 𝑢 𝑑𝑢



• TFC derives expressions, called constrained expressions, with an embedded set of n
linear constraints

𝑦 𝑡 = 𝑔 𝑡 +

𝑘=1

𝑛

𝜂𝑘𝑝𝑘(𝑡) = 𝑔 𝑡 + 𝜼𝑻𝒑(𝑡)

• According to the literature, to solve ODEs, the 𝑔 𝑡 used will be an expansion of 
orthogonal polynomials (Chebyshev): 𝑔 𝑡 = 𝒉𝑇𝝃

– The solution of the problem is reduced to the calculation of the coefficients of 
the expansion of Chebyshev polynomials

TFC approach to solve Linear ODEs

8
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Poiseuille Flow in a plane channel
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BGK model is used to examine theoretically and numerically the flow of a rarefied gas between to parallel 
plates. According to Siewert [2]:

1

2
𝑘𝜃 + 𝜃𝑐𝑥

𝜕

𝜕𝑥
𝑍 𝑥, 𝑐𝑥 + 𝑍 𝑥, 𝑐𝑥 = 𝜋−1/2න

−∞

∞

𝑒−𝑢
2
𝑍 𝑥, 𝑢 𝑑𝑢

for 𝑥 ∈ −
𝑑

2
,
𝑑

2
and cx ∈ −∞,∞ , with the following reflecting boundary conditions:

൞
𝑍 −

𝑑

2
, 𝑐𝑥 = 1 − 𝛼 𝑍 −

𝑑

2
, −𝑐𝑥

𝑍
𝑑

2
, −𝑐𝑥 = 1 − 𝛼 𝑍

𝑑

2
, 𝑐𝑥

[2] Siewert, C. E., Garcia, R. D. M., & Grandjean, P. (1980). A concise and accurate solution for Poiseuille flow in a plane channel. Journal of Mathematical Physics, 21(12), 2760-2763.

for cx ∈ 0,∞ . Here, d is the channel thickness, k is proportional to the Δp
that causes the flow, x is the spatial variable, 𝛼 ∈ 0,1 is the 
accomodation coefficient, 𝜃 is the mean-free time, and

𝑍 𝑥, 𝑐𝑥 = 𝜋−1න
−∞

∞

න
−∞

∞

𝑒− 𝑐𝑦
2+𝑐𝑧

2 2

𝑐𝑧ℎ 𝑥, 𝑐𝑥 , 𝑐𝑦 , 𝑐𝑧 𝑑𝑐𝑦𝑑𝑐𝑧

Where 𝑐𝑥 , 𝑐𝑦 , 𝑐𝑧 are the three components of the molecular velocity and 

h is a perturbation from Maxwell distrtibution.

Image from [Ganapol 2019]
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Reformulation of the problem

According to Barichello and Siewert [3], we introduce some change of variables:

𝜏 =
𝑥

𝜃
; 𝛿 =

𝑑

𝜃
; 𝑢 = 𝑐𝑥

Our equation become:
1

2
𝑘𝜃 + 𝜇

𝜕

𝜕𝜏
𝑍 𝜏, 𝑢 + 𝑍 𝜏, 𝑢 = 𝜋−1/2න

−∞

∞

𝑒−𝑢
2
𝑍 𝜏, 𝑢 𝑑𝑢

for 𝜏 ∈ −
𝛿

2
,
𝛿

2
, and 𝑢 ∈ −∞,∞ with the following reflecting boundary conditions:

൞
𝑍 −

𝑑

2
, 𝑐𝑥 = 1 − 𝛼 𝑍 −

𝑑

2
, −𝑐𝑥

𝑍
𝑑

2
, −𝑐𝑥 = 1 − 𝛼 𝑍

𝑑

2
, 𝑐𝑥

for 𝑢 ∈ 0,∞

Now, in order to obtain a homogeneous version of the problem, we make use of a particular solution that accounts for 
the inhomogeneous term in that equation, and so we introduce

𝑍 𝜏, 𝑢 =
1

2
𝑘𝜃 𝜏2 − 2𝜏𝑢 + 2𝑢2 − 𝑎2 − 2𝑌 𝜏, 𝑢

[3] Barichello, L. B., & Siewert, C. E. (1999). A discrete-ordinates solution for Poiseuille flow in a plane channel. Zeitschrift für angewandte Mathematik und Physik ZAMP, 50(6), 972-981.
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By plugging 𝑍 𝜏, 𝑢 in the previous equations, we get the following problem:

𝑢
𝜕

𝜕𝜏
𝑌 𝜏, 𝑢 + 𝑌 𝜏, 𝑢 = න

−∞

∞

Ψ 𝑢 𝑌 𝜏, 𝑢 𝑑𝑢

Where 2𝑎 = 𝛿, 𝜏 ∈ −𝑎, 𝑎 , and 𝑢 ∈ −∞,∞ .

Subject to:

൝
𝑌 −𝑎, 𝑢 = 1 − 𝛼 𝑌 −𝑎,−𝑢 + 𝛼𝑢2 + 𝑎𝑢 2 − 𝛼

𝑌 𝑎,−𝑢 = 1 − 𝛼 𝑌 𝑎, 𝑢 + 𝛼𝑢2 + 𝑎𝑢 2 − 𝛼

for 𝑢 ∈ 0,∞ .

𝛹 𝑢 is a weight function defined by:

Ψ 𝑢 = 𝜋−1/2𝑒−𝑢
2
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TFC Solution
In order to apply the TFC , we need a new variable x (instead of τ), that ranges in [-1,1], to use Chebyshev polynomials.

The new x variable has been defined as follows [4]:

𝑥 = 𝑐 𝜏 − 𝜏0 + 𝑥0 where 𝑐 is a mapping coefficient:    𝑐 =
𝑥𝑓−𝑥0

𝜏𝑓−𝜏0

And thus,

𝑥 = 𝑐 𝜏 + 𝑎 − 1 and     𝑐 =
1

𝑎

According to the change of variable we have:
𝑌 𝜏, 𝑢 = 𝑌 𝑥, 𝑢

𝑑

𝑑𝜏
𝑌 𝜏, 𝑢 = 𝑐

𝑑

𝑑𝑥
𝑌 𝑥, 𝑢

So, the problem becomes

𝑐𝑢
𝜕

𝜕𝑥
𝑌 𝑥, 𝑢 + 𝑌 𝑥, 𝑢 = න

−∞

∞

Ψ 𝑢 𝑌 𝑥, 𝑢 𝑑𝑢

[4] Mortari, D. (2017). Least-squares solution of linear differential equations. Mathematics, 5(4), 48.



Poiseuille Flow in a plane channel

14

To use a Gauss-Legendre quadrature (which ranges in [-1,1]), we can use an other change of variable, 𝜇 ∈ (0,1).

𝑢 = − log 𝜇 ;     𝑑𝑢 = −
1

𝜇
𝑑𝜇 ;    Ψ 𝜇 = 𝜋−1/2𝑒− − log 𝜇 2

and rewrite:

−𝑐 log 𝜇
𝜕

𝜕𝑥
𝑌 𝑥, 𝜇 + 𝑌 𝑥, 𝜇 = න

−1

1 1

𝜇
Ψ 𝜇 𝑌 𝑥, 𝜇 𝑑𝜇

We discretize the 𝜇 for N points:

𝜇 → 𝝁 = 𝜇𝑖 𝑖=1
𝑁 ; 𝝁 ∈ 𝑁 × 1

The problem can be split for both positive and negative molecular velocity, and the integral can be solved with a Gauss-Legendre quadrature:

−𝑐 log 𝜇𝑖
𝜕

𝜕𝑥
𝑌 𝑥, 𝜇𝑖 + 𝑌 𝑥, 𝜇𝑖 = 

𝑘=1

𝑁

𝑤𝑘

1

𝜇𝑘
Ψ 𝜇𝑘 𝑌 𝑥, 𝜇𝑘 + 𝑌 𝑥,−𝜇𝑘

𝑐 log 𝜇𝑖
𝜕

𝜕𝑥
𝑌 𝑥, −𝜇𝑖 + 𝑌 𝑥,−𝜇𝑖 = 

𝑘=1

𝑁

𝑤𝑘

1

𝜇𝑘
Ψ 𝜇𝑘 𝑌 𝑥, 𝜇𝑘 + 𝑌 𝑥,−𝜇𝑘

s.t.

൝
𝑌 −𝑎, 𝜇 = 1 − 𝛼 𝑌 −𝑎,−𝜇 + 𝛼 ⋅ log(𝜇)2 +𝑎 ⋅ 𝑙𝑜𝑔(𝜇) 2 − 𝛼

𝑌 𝑎,−𝜇 = 1 − 𝛼 𝑌 𝑎, 𝜇 + 𝛼 ⋅ log(𝜇)2 +𝑎 ⋅ 𝑙𝑜𝑔(𝜇) 2 − 𝛼

Colors blue and red are used to represent the positive and negative flux, respectively.
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For the sake of simplicity, we can use a different notation:

−𝑐 log 𝜇𝑖
𝜕

𝜕𝑥
𝑌𝑖
+ + 𝑌𝑖

+ = 

𝑘=1

𝑁

𝑤𝑘

1

𝜇𝑘
Ψ 𝜇𝑘 𝑌𝑘

+ + 𝑌𝑘
−

𝑐 log 𝜇𝑖
𝜕

𝜕𝑥
𝑌𝑖
− + 𝑌𝑖

− = 

𝑘=1

𝑁

𝑤𝑘

1

𝜇𝑘
Ψ 𝜇𝑘 𝑌𝑘

+ + 𝑌𝑘
−

s.t.

൝
𝑌0
+ = 1 − 𝛼 𝑌0

− + 𝛼 ⋅ log(𝜇𝑖)
2 +𝑎 ⋅ 𝑙𝑜𝑔(𝜇𝑖) 2 − 𝛼

𝑌𝑓
− = 1 − 𝛼 𝑌𝑓

+ + 𝛼 ⋅ log(𝜇𝑖)
2 +𝑎 ⋅ 𝑙𝑜𝑔(𝜇𝑖) 2 − 𝛼

Our constrained expressions are:
𝑌𝑖
+ = 𝒉 ⋅ 𝝃𝒊

+ + 𝜂𝑖
+ ;         𝑌𝑖

− = 𝒉 ⋅ 𝝃𝒊
− + 𝜂𝑖

−

And according to the boundary conditions:

𝑌0
+ = 𝒉𝟎 ⋅ 𝝃𝒊

+ + 𝜂𝑖
+ 𝑌𝑓

− = 𝒉𝒇 ⋅ 𝝃𝒊
− + 𝜂𝑖

−

𝑌𝑓
+ = 𝒉𝒇 ⋅ 𝝃𝒊

+ + 𝜂𝑖
+ 𝑌0

− = 𝒉𝟎 ⋅ 𝝃𝒊
− + 𝜂𝑖

−

Replacing them in the previous system of equations, we obtain:

൝
𝒉𝟎 ⋅ 𝝃𝒊

+ + 𝜂𝑖
+ = 1 − 𝛼 𝒉𝟎 ⋅ 𝝃𝒊

− + 𝜂𝑖
− + 𝛼 ⋅ log(𝜇𝑖)

2 +𝑎 ⋅ 𝑙𝑜𝑔(𝜇𝑖) 2 − 𝛼

𝒉𝒇 ⋅ 𝝃𝒊
− + 𝜂𝑖

− = 1 − 𝛼 𝒉𝒇 ⋅ 𝝃𝒊
+ + 𝜂𝑖

+ + 𝛼 ⋅ log(𝜇𝑖)
2 +𝑎 ⋅ 𝑙𝑜𝑔(𝜇𝑖) 2 − 𝛼
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Let’s call new parameters:

𝐾𝑖 = 𝛼 ⋅ log(𝜇𝑖)
2 +𝑎 ⋅ 𝑙𝑜𝑔(𝜇𝑖) 2 − 𝛼 and        𝛽 = 1 − 𝛼

and rewrite

൝
𝒉𝟎 ⋅ 𝝃𝒊

+ + 𝜂𝑖
+ = 𝛽 ⋅ 𝒉𝟎 ⋅ 𝝃𝒊

− + 𝜂𝑖
− + 𝐾𝑖

𝒉𝒇 ⋅ 𝝃𝒊
− + 𝜂𝑖

− = 𝛽 ⋅ 𝒉𝒇 ⋅ 𝝃𝒊
+ + 𝜂𝑖

+ + 𝐾𝑖
⟹ ൝

𝜂𝑖
+ − 𝛽𝜂𝑖

− = 𝛽 ⋅ 𝒉𝟎 ⋅ 𝝃𝒊
− − 𝒉𝟎 ⋅ 𝝃𝒊

+ + 𝐾𝑖
−𝛽𝜂𝑖

− + 𝜂𝑖
− = 𝛽 ⋅ 𝒉𝒇 ⋅ 𝝃𝒊

+ − 𝒉𝒇 ⋅ 𝝃𝒊
− + 𝐾𝑖

1 −𝛽
−𝛽 1

⋅
𝜂𝑖
+

𝜂𝑖
− =

𝛽 ⋅ 𝒉𝟎 ⋅ 𝝃𝒊
− − 𝒉𝟎 ⋅ 𝝃𝒊

+ + 𝐾𝑖
𝛽 ⋅ 𝒉𝒇 ⋅ 𝝃𝒊

+ − 𝒉𝒇 ⋅ 𝝃𝒊
− + 𝐾𝑖

⟹
𝜂𝑖
+

𝜂𝑖
− =

1

1 − 𝛽2
⋅
1 𝛽
𝛽 1

⋅
𝛽 ⋅ 𝒉𝟎 ⋅ 𝝃𝒊

− − 𝒉𝟎 ⋅ 𝝃𝒊
+ + 𝐾𝑖

𝛽 ⋅ 𝒉𝒇 ⋅ 𝝃𝒊
+ − 𝒉𝒇 ⋅ 𝝃𝒊

− + 𝐾𝑖

Introducing a new parameter:                                       𝛾 =
1

1−𝛽2

𝜂𝑖
+

𝜂𝑖
− =

𝛾 𝛾𝛽
𝛾𝛽 𝛾

⋅
𝛽 ⋅ 𝒉𝟎 ⋅ 𝝃𝒊

− − 𝒉𝟎 ⋅ 𝝃𝒊
+ +𝐾𝑖

𝛽 ⋅ 𝒉𝒇 ⋅ 𝝃𝒊
+ − 𝒉𝒇 ⋅ 𝝃𝒊

− + 𝐾𝑖
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ቐ
𝜂𝑖
+ = 𝛾 𝛽2𝒉𝒇 − 𝒉𝟎 ⋅ 𝝃𝒊

+ + 𝛾𝛽 𝒉𝟎 − 𝒉𝒇 ⋅ 𝝃𝒊
− + 𝛾𝐾𝑖 𝛽 + 1

𝜂𝑖
− = 𝛾𝛽 𝒉𝒇 − 𝒉𝟎 ⋅ 𝝃𝒊

+ + 𝛾 𝛽2𝒉𝟎 − 𝒉𝒇 ⋅ 𝝃𝒊
− + 𝛾𝐾𝑖 𝛽 + 1

Calling 𝜃 = 𝛾 𝛽 + 1

ቐ
𝜂𝑖
+ = 𝛾 𝛽2𝒉𝒇 − 𝒉𝟎 ⋅ 𝝃𝒊

+ + 𝛾𝛽 𝒉𝟎 − 𝒉𝒇 ⋅ 𝝃𝒊
− + 𝜃𝐾𝑖

𝜂𝑖
− = 𝛾𝛽 𝒉𝒇 − 𝒉𝟎 ⋅ 𝝃𝒊

+ + 𝛾 𝛽2𝒉𝟎 − 𝒉𝒇 ⋅ 𝝃𝒊
− + 𝜃𝐾𝑖

Replacing them in the constrained expressions, we have:

𝑌𝑖
+ = 𝒉 − 𝛾𝒉𝟎 + 𝛾𝛽2𝒉𝒇 ⋅ 𝝃𝒊

+ + 𝛾𝛽 𝒉𝟎 − 𝒉𝒇 ⋅ 𝝃𝒊
− + 𝜃𝐾𝑖

𝑌𝑖
− = 𝛾𝛽 𝒉𝒇 − 𝒉𝟎 ⋅ 𝝃𝒊

+ + 𝒉 − 𝛾𝒉𝒇 + 𝛾𝛽2𝒉𝟎 ⋅ 𝝃𝒊
− + 𝜃𝐾𝑖
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And replacing the constrained expressions in the equations of our problem, we have:

−𝑐 log 𝜇𝑖 𝒉′ + 𝒉 − 𝛾𝒉𝟎 + 𝛾𝛽2𝒉𝒇 ⋅ 𝝃𝒊
+ + 𝛾𝛽 𝒉𝟎 − 𝒉𝒇 ⋅ 𝝃𝒊

− −

𝑘=1

𝑁

𝑤𝑘

1

𝜇𝑘
Ψ 𝜇𝑘 𝒉 − 𝜃𝒉𝟎 + 𝜃𝛽𝒉𝒇 ⋅ 𝝃𝒌

+ + 𝒉 − 𝜃𝒉𝒇 + 𝜃𝛽𝒉𝟎 ⋅ 𝝃𝒊
− = −𝜃𝐾𝑖 +

𝑘=1

𝑁

2𝜃𝐾𝑘

𝛾𝛽 𝒉𝒇 − 𝒉𝟎 ⋅ 𝝃𝒊
+ + 𝑐 log 𝜇𝑖 𝒉′ + 𝒉 − 𝛾𝒉𝒇 + 𝛾𝛽2𝒉𝟎 ⋅ 𝝃𝒊

− −

𝑘=1

𝑁

𝑤𝑘

1

𝜇𝑘
Ψ 𝜇𝑘 𝒉 − 𝜃𝒉𝟎 + 𝜃𝛽𝒉𝒇 ⋅ 𝝃𝒌

+ + 𝒉 − 𝜃𝒉𝒇 + 𝜃𝛽𝒉𝟎 ⋅ 𝝃𝒊
− = −𝜃𝐾𝑖 +

𝑘=1

𝑁

2𝜃𝐾𝑘

For the sake of simplicity, we write the inhomogeneous term as:

𝑏𝑖
+ = −𝜃𝐾𝑖 + σ𝑘=1

𝑁 2𝜃𝐾𝑘 and          𝑏𝑖
− =−𝜃𝐾𝑖 + σ𝑘=1

𝑁 2𝜃𝐾𝑘

Expanding the summations, we get the following matrix form:

−𝑐 log 𝜇𝑖 𝒉′ + 𝒉 − 𝛾𝒉𝟎 + 𝛾𝛽2𝒉𝒇 − 𝑤𝑘

1

𝜇𝑘
Ψ 𝜇𝑘 𝒉 − 𝜃𝒉𝟎 + 𝜃𝛽𝒉𝒇 𝛾𝛽 𝒉𝟎 − 𝒉𝒇 − 𝑤𝑘

1

𝜇𝑘
Ψ 𝜇𝑘 𝒉 − 𝜃𝒉𝒇 + 𝜃𝛽𝒉𝟎

𝛾𝛽 𝒉𝒇 − 𝒉𝟎 − 𝑤𝑘

1

𝜇𝑘
Ψ 𝜇𝑘 𝒉 − 𝜃𝒉𝟎 + 𝜃𝛽𝒉𝒇 𝑐 log 𝜇𝑖 𝒉′ + 𝒉 − 𝛾𝒉𝒇 + 𝛾𝛽2𝒉𝟎 − 𝑤𝑘

1

𝜇𝑘
Ψ 𝜇𝑘 𝒉 − 𝜃𝒉𝒇 + 𝜃𝛽𝒉𝟎

⋅
𝝃𝒊
+

𝝃𝒊
− =

𝑏𝑖
+

𝑏𝑖
−

For the sake of simplicity we write the following terms as:

◼𝑖= −𝑐 log 𝜇𝑖 𝒉′
𝑻
+ 𝒉𝑻 − 𝛾𝒉𝟎

𝑻 + 𝛾𝛽2𝒉𝒇
𝑻 ●𝑖 = 𝑐 log 𝜇𝑖 𝒉′

𝑻
+ 𝒉𝑻 − 𝛾𝒉𝒇

𝑻 + 𝛾𝛽2𝒉𝟎
𝑻

◼𝑘 = −𝑤𝑘

1

𝜇𝑘
Ψ 𝜇𝑘 𝒉 − 𝜃𝒉𝟎 + 𝜃𝛽𝒉𝒇

𝑇
♣𝑘 = 𝛾𝛽 𝒉𝟎 − 𝒉𝒇

𝑇

●𝑘 = −𝑤𝑘

1

𝜇𝑘
Ψ 𝜇𝑘 𝒉 − 𝜃𝒉𝒇 + 𝜃𝛽𝒉𝟎

𝑇
♠𝑘 = 𝛾𝛽 𝒉𝒇 − 𝒉𝟎
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And we can obtain the following system:

𝑖 = 1

𝑖 = 2

𝑖 = 3
:
:
:

𝑖 = 𝑁

◼1 +◼1 ♣1 +●1 ◼2 ●2 ◼3 ●3 ⋯ ⋯ ◼𝑁 ●𝑁

♠1 +◼1 ●1 +●1 ◼2 ●2 ◼3 ●3 ⋯ ⋯ ◼𝑁 ●𝑁

◼1 ●1 ◼2 +◼2 ♣2 +●2 ◼3 ♣3 ⋱ ⋱ ⋮ ⋮
◼1 ●1 ♠2 +◼2 ●2 +●2 ♠3 ●3 ⋱ ⋱ ⋮ ⋮
◼1 ●1 ◼2 ●2 ◼3 +◼3 ♣3 +●3 ⋱ ⋱ ⋮ ⋮
◼1 ●1 ◼2 ●2 ♠3 +◼3 ●3 +●3 ⋱ ⋱ ⋮ ⋮
⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮ ⋮
⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮ ⋮
◼1 ●1 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ◼𝑁 +◼𝑁 ♣𝑁 +●𝑁

◼1 ●1 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ♠𝑁 +◼𝑁 ●𝑁 +●𝑁

⋅

𝜉1
+

𝜉1
−

𝜉2
+

𝜉2
−

𝜉3
+

𝜉3
−

⋮
⋮
⋮
𝜉𝑁
+

𝜉𝑁
−

=

𝑏1
+

𝑏1
−

𝑏2
+

𝑏2
−

𝑏3
+

𝑏3
−

⋮
⋮
⋮
𝑏𝑁
+

𝑏𝑁
−

𝑘 = 1 𝑘 = 2 𝑘 =3 𝑘 = 𝑁⋯ ⋯

It becomes:

◼𝑖 +◼𝑘 ♣𝑘 +●𝑘

♠𝑘 +◼𝑘 ●𝑖 +●𝑘
⋅
𝝃𝒊
+

𝝃𝒊
− =

𝑏𝑖
+

𝑏𝑖
−

◼𝑖= −𝑐 log 𝜇𝑖 𝒉′
𝑻
+ 𝒉𝑻 − 𝛾𝒉𝟎

𝑻 + 𝛾𝛽2𝒉𝒇
𝑻 ●𝑖 = 𝑐 log 𝜇𝑖 𝒉′

𝑻
+ 𝒉𝑻 − 𝛾𝒉𝒇

𝑻 + 𝛾𝛽2𝒉𝟎
𝑻

◼𝑘 = −𝑤𝑘

1

𝜇𝑘
Ψ 𝜇𝑘 𝒉 − 𝜃𝒉𝟎 + 𝜃𝛽𝒉𝒇

𝑇
♣𝑘 = 𝛾𝛽 𝒉𝟎 − 𝒉𝒇

𝑇

●𝑘 = −𝑤𝑘

1

𝜇𝑘
Ψ 𝜇𝑘 𝒉 − 𝜃𝒉𝒇 + 𝜃𝛽𝒉𝟎

𝑇
♠𝑘 = 𝛾𝛽 𝒉𝒇 − 𝒉𝟎
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To find the vector of unknowns 
𝝃 = 𝝃𝟏

+ ; 𝝃𝟏
−; 𝝃𝟐

+ ; 𝝃𝟐
−; ……… ; 𝝃𝑵

+ ; 𝝃𝑵
−

we need to solve the following linear system via Least-Squares :

𝑨 ⋅ 𝝃 = 𝑩

where:

𝜉𝑖
± = 𝑚 × 1 𝝃 = (2 ⋅ 𝑚 ⋅ 𝑁 × 1) 𝑏𝑖

± = 𝑀 × 1 𝑩 = 2 ⋅ 𝑀 ⋅ 𝑁 × 1

◼𝑖 , ●𝑖 ,◼𝑘,♣𝑘 , ♠𝑘 , ●𝑘 = (𝑀 ×𝑚) 𝑨 = 2 ⋅ 𝑀 ⋅ 𝑁 × 2 ⋅ 𝑚 ⋅ 𝑁

Once the linear system is solved, the solutions for positive and negative flux can be found as:

𝑌+ = 𝒉 − 𝛾𝒉𝟎 + 𝛾𝛽2𝒉𝒇 ⋅ 𝝃+ + 𝛾𝛽 𝒉𝟎 − 𝒉𝒇 ⋅ 𝝃− + 𝜃𝐾

𝑌− = 𝛾𝛽 𝒉𝒇 − 𝒉𝟎 ⋅ 𝝃+ + 𝒉 − 𝛾𝒉𝒇 + 𝛾𝛽2𝒉𝟎 ⋅ 𝝃− + 𝜃𝐾
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Code Analysis and Benchmarking

To demonstrate the precision of the TFC in solving the problem, we report the macroscopic velocity profile, that according to [5] is given 
by:

𝑞 𝜏 =
1

𝑘𝜃
න
−∞

∞

Ψ 𝑢 𝑍 𝜏, 𝑢 𝑑𝑢

By replacing the expression of 𝑍 𝜏, 𝑢 into 𝑞 𝜏 we get

𝑞 𝜏 =
1

2
1 − 𝑎2 + 𝜏2 − 𝑌0 𝜏

where

𝑌0 𝜏 = න
−∞

∞

Ψ 𝑢 𝑌 𝜏, 𝑢 𝑑𝑢

Which it can be computed making use of a Gaussian-Legendre quadrature

𝑌0 𝜏 = න
−1

1 1

𝜇
Ψ 𝜇 𝑌 𝜏, 𝜇 𝑑𝜇 = 

𝑘=1

𝑁

𝑤𝑘

1

𝜇𝑘
Ψ 𝜇𝑘 𝑌𝑖

+ − 𝑌𝑖
−

[5] Loyalka, S. K., Petrellis, N., & Storvick, T. S. (1979). Some exact numerical results for the BGK model: Couette, Poiseuille and thermal creep flow between parallel 

plates. Zeitschrift für angewandte Mathematik und Physik ZAMP, 30(3), 514-521.
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Microscopic velocity profile 𝒒(𝝉)

CPU time for the Least-
Squares ≅ 0.24 seconds

RGD via TFC
N = 22

RGD via ADO
N = 100

vs.

[3] Barichello, L. B., & Siewert, C. E. (1999). A discrete-ordinates solution for Poiseuille flow in a plane channel. Zeitschrift für angewandte Mathematik und Physik ZAMP, 50(6), 972-981.

[3]
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Furthermore, we computed the flow rate

𝑄 = −
1

2𝑎2
න
−𝑎

𝑎

𝑞 𝜏 𝑑𝜏

And by replacing the expression of 𝑞 𝜏 into 𝑄 𝜏 we get

𝑄 =
1

2𝑎2
න
−𝑎

𝑎

𝑌0 𝜏 𝑑𝜏 −
1

2𝑎
1 −

2

3
𝑎2

Flow rate 𝐐(𝒂)

• M=40 and m=24, for 2a=0.05,  with computational time = 0.04 s.
• M=300 and m=90, for 2a=9, with computational time = 1.6 s.

All the results are obtained with a velocity discretization of N=30. 

[3]

[3] Barichello, L. B., & Siewert, C. E. (1999). A discrete-ordinates solution for Poiseuille flow in a plane channel. Zeitschrift für angewandte Mathematik und Physik ZAMP, 50(6), 972-981.
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24[6] Ganapol, B. D. (2016, November). Poiseuille channel flow by adding and doubling. In AIP Conference Proceedings (Vol. 1786, No. 1, p. 070009). AIP Publishing LLC.

Flow rate 𝐐(𝒂)
Finally, we pushed the code increasing the discretization of space, 
velocity, and number of Chebyshev Polynomials to reach the 7 digits 
benchmarks published by Ganapol [6].

Parameters used to compute the flow rate 𝑄(𝑎) for each channel 
width.

[6]
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Following the formulation proposed by Ganapol [7], and taking some moments of the linearized BGK equation, the 
problem to be solved is the following:

𝑐𝑥𝐾0 +
1

2
𝑅𝑧 +

1

2
𝐾𝑧 𝑐2 +

3

2
+ 𝑐𝑥

𝜕

𝜕𝑥
𝑍 𝑥, 𝑐𝑥 + 𝜆0𝑍 𝑥, 𝑐𝑥 = 𝜆0𝜋

−1/2න
−∞

∞

𝑒−𝑐𝑥
2
𝑍 𝑥, 𝑐𝑥 𝑑𝑐𝑥

for 𝑥 ∈ −
𝑑

2
,
𝑑

2
and cx ∈ −∞,∞ , with the following reflecting boundary conditions:

𝑍 −
𝑑

2
, 𝑐𝑥 = 𝛼𝑢𝑤 + 1 − 𝛼 𝑍 −

𝑑

2
,−𝑐𝑥

𝑍
𝑑

2
,−𝑐𝑥 = 𝛼𝑢𝑤 + 1 − 𝛼 𝑍

𝑑

2
, 𝑐𝑥

for cx ∈ 0,∞ . Here, d is the channel thickness, 𝑢𝑤 is the wall velocity, 𝑅𝑧 and 𝐾𝑧 are gradients in the flow direction 𝑧, 
𝐾 is the scattering kernel, 𝐾0 is proportional to 𝐾, 𝜆0 is proportional to the frequency of collisions between the atoms, 
x is the spatial variable, 𝛼 ∈ 0,1 is the accomodation coefficient, and the moment 𝑍 𝑥, 𝑐𝑥 is:

𝑍 𝑥, 𝑐𝑥 = 𝜋−1න
−∞

∞

න
−∞

∞

𝑒− 𝑐𝑦
2+𝑐𝑧

2 2

𝑐𝑧ℎ 𝑥, 𝑐𝑥 , 𝑐𝑦 , 𝑐𝑧 𝑑𝑐𝑦𝑑𝑐𝑧

Where 𝑐𝑥 , 𝑐𝑦 , 𝑐𝑧 are the three components of the molecular velocity and h is a perturbation from Maxwell 
distribution.

[7] Barry D. Ganapol, 1D thermal creep channel flow in the BGK approximation by adding and doubling, Annals of Nuclear Energy, 2019
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Microscopic velocity profile 𝒒(𝝉) Flow rate 𝑸(𝒂, 𝜶)

Parameters used to compute 
the flow rate 𝑄(𝑎) for each 
channel width.
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Conclusions and Outlooks

• The RGD problems are solved via TFC
▪ The accuracy of the results is compared with the published benchmarks

▪ Straightforward implementation

• TFC has also been applied to Radiative Transfer Equations (RTE)
▪ Isotropic problems
▪ Anisotropic Problems

• Future developments (via X-TFC)
▪ To solve the 3D time-dependent RGD problems
▪ To solve the 3D time-dependent RTE
▪ To solve Neutron Transport Equations 29
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