Physics-Informed Solutions of Rarefied Gas Dynamics Problems via Theory of Functional Connections

Mario De Florio ${ }^{1}$, Enrico Schiassi ${ }^{1}$, Roberto Furfaro ${ }^{1,2}$, Barry D. Ganapol ${ }^{2}$ The University of Arizona, USA
${ }^{1}$ Systems \& Industrial Engineering, ${ }^{2}$ Aerospace \& Mechanical Engineering

$1^{\text {st }}$ World Online Conference on Theory of Functional Connections
May 22, 2020

Research, Discovery \& Innovation

Contents

- Introduction
- Overview
- Goal
- Background
- Boltzmann Transport Equations for Rarefied Gas Dynamics
- TFC approach to solve Linear ODEs
- Poiseuille Flow in a plane channel
- Formulation
- Results
- Thermal Creep in a plane channel
- Formulation
- Results
- Conclusions and Outlooks

Contents

- Introduction
- Overview
- Goal
- Background
- Boltzmann Transport Equations for Rarefied Gas Dynamics
- TFC annroach to solve Linear ODFs
- Poiseuille Flow in a plane channel
- Formulation
- Results
- Thermal Creep Flow in a plane channel
- Formulation
- Results

Introduction: Overview

- The Rarefied Gas Dynamics, or free molecular flow, describes the fluid dynamics of gas where the mean free path (λ) of the molecules is larger than the size (d) of the chamber under test: Knudsen number $\mathrm{Kn}=\frac{\lambda}{d}>1$.
- The Poiseuille Flow is a laminar pressure-induced flow in a channel of length $/$ and width d, with $l \gg d$.
- The Thermal Creep Flow is a flow of a slightly rarefied gas caused by the temperature gradient along a wall.

Introduction: Goal

- To show the capability of Theory of Functional Connections (TFC) [1] in solving RGD problems with high accuracy.
- The problems studied are based on the BGK model of the integro-differential Boltzmann Transport Equation for particles.

Contents

- Introduction
- Overview
- Goal
- Background
- Boltzmann Transport Equations for Rarefied Gas Dynamics
- TFC approach to solve Linear ODEs
- Poiseuille Flow in a plane channel
- Formulation
- Results
- Thermal Creep Flow in a plane channel
- Formulation
- Results
- Solving Boltzmann Transport Equations for Rarefied Gas Dynamics is generally hard and computationally expensive
- No direct analytical solutions except in very limited cases
- Methods to solve Boltzmann Transport Equations generally are
- Semi-analytical
- High accuracy in limited cases

$$
u \frac{\partial}{\partial \tau} Y(\tau, u)+Y(\tau, u)=\int_{-\infty}^{\infty} \Psi(u) Y(\tau, u) d u
$$

- Numerical
- Hard implementation

TFC approach to solve Linear ODEs

- TFC derives expressions, called constrained expressions, with an embedded set of n linear constraints

$$
y(t)=g(t)+\sum_{k=1}^{n} \eta_{k} p_{k}(t)=g(t)+\boldsymbol{\eta}^{T} \boldsymbol{p}(t)
$$

- According to the literature, to solve ODEs, the $g(t)$ used will be an expansion of orthogonal polynomials (Chebyshev): $g(t)=\boldsymbol{h}^{T} \boldsymbol{\xi}$
- The solution of the problem is reduced to the calculation of the coefficients of the expansion of Chebyshev polynomials

Contents

- Introduction
- Overview
- Goal
- Background
- Boltzmann Transport Equations for Rarefied Gas Dynamics
- TFC approach to solve Linear ODEs
- Poiseuille Flow in a plane channel
- Formulation
- Results
- Thermal Creep Flow in a plane channel
- Formulation
- Results

Poiseuille Flow in a plane channel

BGK model is used to examine theoretically and numerically the flow of a rarefied gas between to parallel plates. According to Siewert [2]:

$$
\frac{1}{2} k \theta+\theta c_{x} \frac{\partial}{\partial x} Z\left(x, c_{x}\right)+Z\left(x, c_{x}\right)=\pi^{-1 / 2} \int_{-\infty}^{\infty} e^{-u^{2}} Z(x, u) d u
$$

for $x \in\left(-\frac{d}{2}, \frac{d}{2}\right)$ and $\mathrm{c}_{\mathrm{x}} \in(-\infty, \infty)$, with the following reflecting boundary conditions:

$$
\left\{\begin{array}{c}
Z\left(-\frac{d}{2}, c_{x}\right)=(1-\alpha) Z\left(-\frac{d}{2},-c_{x}\right) \\
Z\left(\frac{d}{2},-c_{x}\right)=(1-\alpha) Z\left(\frac{d}{2}, c_{x}\right)
\end{array}\right.
$$

for $\mathrm{c}_{\mathrm{x}} \in(0, \infty)$. Here, d is the channel thickness, k is proportional to the Δp that causes the flow, x is the spatial variable, $\alpha \in(0,1]$ is the accomodation coefficient, θ is the mean-free time, and

$$
Z\left(x, c_{x}\right)=\pi^{-1} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(c_{y}^{2}+c_{z}^{2}\right)^{2}} c_{z} h\left(x, c_{x}, c_{y}, c_{z}\right) d c_{y} d c_{z}
$$

Where $\left(c_{x}, c_{y}, c_{z}\right)$ are the three components of the molecular velocity and h is a perturbation from Maxwell distrtibution.

Poiseuille Flow in a plane channel

Reformulation of the problem

According to Barichello and Siewert [3], we introduce some change of variables:

$$
\tau=\frac{x}{\theta} \quad ; \quad \delta=\frac{d}{\theta} \quad ; \quad u=c_{x}
$$

Our equation become:

$$
\frac{1}{2} k \theta+\mu \frac{\partial}{\partial \tau} Z(\tau, u)+Z(\tau, u)=\pi^{-1 / 2} \int_{-\infty}^{\infty} e^{-u^{2}} Z(\tau, u) d u
$$

for $\tau \in\left(-\frac{\delta}{2}, \frac{\delta}{2}\right)$, and $u \in(-\infty, \infty)$ with the following reflecting boundary conditions:

$$
\left\{\begin{array}{l}
Z\left(-\frac{d}{2}, c_{x}\right)=(1-\alpha) Z\left(-\frac{d}{2},-c_{x}\right) \\
Z\left(\frac{d}{2},-c_{x}\right)=(1-\alpha) Z\left(\frac{d}{2}, c_{x}\right)
\end{array} \text { for } u \in(0, \infty)\right.
$$

Now, in order to obtain a homogeneous version of the problem, we make use of a particular solution that accounts for the inhomogeneous term in that equation, and so we introduce

$$
Z(\tau, u)=\frac{1}{2} k \theta\left[\tau^{2}-2 \tau u+2 u^{2}-a^{2}-2 Y(\tau, u)\right]
$$

Poiseuille Flow in a plane channel

By plugging $Z(\tau, u)$ in the previous equations, we get the following problem:

$$
u \frac{\partial}{\partial \tau} Y(\tau, u)+Y(\tau, u)=\int_{-\infty}^{\infty} \Psi(u) Y(\tau, u) d u
$$

Where $2 a=\delta, \tau \in(-a, a)$, and $u \in(-\infty, \infty)$.

Subject to:

$$
\left\{\begin{array}{c}
Y(-a, u)=(1-\alpha) Y(-a,-u)+\alpha u^{2}+a u(2-\alpha) \\
Y(a,-u)=(1-\alpha) Y(a, u)+\alpha u^{2}+a u(2-\alpha)
\end{array}\right.
$$

for $u \in(0, \infty)$.
$\Psi(u)$ is a weight function defined by:

$$
\Psi(u)=\pi^{-1 / 2} e^{-u^{2}}
$$

Poiseuille Flow in a plane channel

TFC Solution

In order to apply the TFC , we need a new variable x (instead of τ), that ranges in $[-1,1]$, to use Chebyshev polynomials. The new x variable has been defined as follows [4]:
$x=c\left(\tau-\tau_{0}\right)+x_{0} \quad$ where c is a mapping coefficient: $\quad c=\frac{x_{f}-x_{0}}{\tau_{f}-\tau_{0}}$
And thus,

$$
x=c(\tau+a)-1 \quad \text { and } \quad c=\frac{1}{a}
$$

According to the change of variable we have:

$$
\begin{gathered}
Y(\tau, u)=Y(x, u) \\
\frac{d}{d \tau} Y(\tau, u)=c \frac{d}{d x} Y(x, u)
\end{gathered}
$$

So, the problem becomes

$$
c u \frac{\partial}{\partial x} Y(x, u)+Y(x, u)=\int_{-\infty}^{\infty} \Psi(u) Y(x, u) d u
$$

Poiseuille Flow in a plane channel

To use a Gauss-Legendre quadrature (which ranges in $[-1,1]$), we can use an other change of variable, $\mu \in(0,1)$.

$$
u=-\log (\mu) \quad ; \quad d u=-\frac{1}{\mu} d \mu \quad ; \quad \Psi(\mu)=\pi^{-1 / 2} e^{-(-\log (\mu))^{2}}
$$

and rewrite:

$$
-c \log (\mu) \frac{\partial}{\partial x} Y(x, \mu)+Y(x, \mu)=\int_{-1}^{1} \frac{1}{\mu} \Psi(\mu) Y(x, \mu) d \mu
$$

We discretize the μ for N points:

$$
\mu \quad \rightarrow \quad \boldsymbol{\mu}=\left\{\mu_{i}\right\}_{i=1}^{N} ; \quad(\boldsymbol{\mu} \in(N \times 1))
$$

The problem can be split for both positive and negative molecular velocity, and the integral can be solved with a Gauss-Legendre quadrature:

$$
\begin{aligned}
-c \log \left(\mu_{i}\right) \frac{\partial}{\partial x} Y\left(x, \mu_{i}\right)+Y\left(x, \mu_{i}\right) & =\sum_{k=1}^{N} w_{k} \frac{1}{\mu_{k}} \Psi\left(\mu_{k}\right)\left[Y\left(x, \mu_{k}\right)+Y\left(x,-\mu_{k}\right)\right] \\
c \log \left(\mu_{i}\right) \frac{\partial}{\partial x} Y\left(x,-\mu_{i}\right)+Y\left(x,-\mu_{i}\right) & =\sum_{k=1}^{N} w_{k} \frac{1}{\mu_{k}} \Psi\left(\mu_{k}\right)\left[Y\left(x, \mu_{k}\right)+Y\left(x,-\mu_{k}\right)\right]
\end{aligned}
$$

s.t.

$$
\left\{\begin{array}{c}
Y(-a, \mu)=(1-\alpha) Y(-a,-\mu)+\alpha \cdot \log (\mu)^{2}+a \cdot \log (\mu)(2-\alpha) \\
Y(a,-\mu)=(1-\alpha) Y(a, \mu)+\alpha \cdot \log (\mu)^{2}+a \cdot \log (\mu)(2-\alpha)
\end{array}\right.
$$

Colors blue and red are used to represent the positive and negative flux, respectively.

Poiseuille Flow in a plane channel

For the sake of simplicity, we can use a different notation:

$$
\begin{aligned}
-c \log \left(\mu_{i}\right) \frac{\partial}{\partial x} Y_{i}^{+}+Y_{i}^{+} & =\sum_{k=1}^{N} w_{k} \frac{1}{\mu_{k}} \Psi\left(\mu_{k}\right)\left[Y_{k}^{+}+Y_{k}^{-}\right] \\
c \log \left(\mu_{i}\right) \frac{\partial}{\partial x} Y_{i}^{-}+Y_{i}^{-} & =\sum_{k=1}^{N} w_{k} \frac{1}{\mu_{k}} \Psi\left(\mu_{k}\right)\left[Y_{k}^{+}+Y_{k}^{-}\right]
\end{aligned}
$$

s.t.

$$
\begin{aligned}
& \left\{\begin{array}{l}
Y_{0}^{+}=(1-\alpha) Y_{0}^{-}+\alpha \cdot \log \left(\mu_{i}\right)^{2}+a \cdot \log \left(\mu_{i}\right)(2-\alpha) \\
Y_{f}^{-}=(1-\alpha) Y_{f}^{+}+\alpha \cdot \log \left(\mu_{i}\right)^{2}+a \cdot \log \left(\mu_{i}\right)(2-\alpha)
\end{array}\right. \\
& Y_{i}^{+}=\boldsymbol{h} \cdot \zeta_{i}^{+}+\eta_{i}^{+} \quad ; \quad Y_{i}^{-}=\boldsymbol{h} \cdot \xi_{i}^{-}+\eta_{i}^{-}
\end{aligned}
$$

And according to the boundary conditions:

$$
\begin{array}{ll}
Y_{0}^{+}=\boldsymbol{h}_{\mathbf{0}} \cdot \xi_{i}^{+}+\eta_{i}^{+} & Y_{f}^{-}=\boldsymbol{h}_{\boldsymbol{f}} \cdot \xi_{\boldsymbol{i}}^{-}+\eta_{i}^{-} \\
Y_{f}^{+}=\boldsymbol{h}_{\boldsymbol{f}} \cdot \zeta_{i}^{+}+\eta_{i}^{+} & Y_{0}^{-}=\boldsymbol{h}_{\mathbf{0}} \cdot \xi_{\boldsymbol{i}}^{-}+\eta_{i}^{-}
\end{array}
$$

Replacing them in the previous system of equations, we obtain:

$$
\left\{\begin{array}{l}
\boldsymbol{h}_{\mathbf{0}} \cdot \xi_{i}^{+}+\eta_{i}^{+}=(1-\alpha) \boldsymbol{h}_{\mathbf{0}} \cdot \xi_{i}^{-}+\eta_{i}^{-}+\alpha \cdot \log \left(\mu_{i}\right)^{2}+a \cdot \log \left(\mu_{i}\right)(2-\alpha) \\
\boldsymbol{h}_{\boldsymbol{f}} \cdot \xi_{\boldsymbol{i}}^{-}+\eta_{i}^{-}=(1-\alpha) \boldsymbol{h}_{\boldsymbol{f}} \cdot \xi_{\boldsymbol{i}}^{+}+\eta_{i}^{+}+\alpha \cdot \log \left(\mu_{i}\right)^{2}+a \cdot \log \left(\mu_{i}\right)(2-\alpha)
\end{array}\right.
$$

Poiseuille Flow in a plane channel

Let's call new parameters:
$K_{i}=\alpha \cdot \log \left(\mu_{i}\right)^{2}+a \cdot \log \left(\mu_{i}\right)(2-\alpha) \quad$ and $\quad \beta=(1-\alpha)$
and rewrite

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ \boldsymbol { h } _ { \mathbf { 0 } } \cdot \boldsymbol { \xi } _ { \boldsymbol { i } } ^ { + } + \eta _ { i } ^ { + } = \beta \cdot \boldsymbol { h } _ { \mathbf { 0 } } \cdot \xi _ { \boldsymbol { i } } ^ { - } + \eta _ { i } ^ { - } + K _ { i } } \\
{ \boldsymbol { h } _ { \boldsymbol { f } } \cdot \boldsymbol { \xi } _ { \boldsymbol { i } } ^ { - } + \eta _ { i } ^ { - } = \beta \cdot \boldsymbol { h } _ { \boldsymbol { f } } \cdot \xi _ { \boldsymbol { i } } ^ { + } + \eta _ { i } ^ { + } + K _ { i } }
\end{array} \quad \Longrightarrow \quad \left\{\begin{array}{l}
\eta_{i}^{+}-\beta \eta_{i}^{-}=\beta \cdot \boldsymbol{h}_{\mathbf{0}} \cdot \boldsymbol{\xi}_{\boldsymbol{i}}^{-}-\boldsymbol{h}_{\mathbf{0}} \cdot \boldsymbol{\xi}_{\boldsymbol{i}}^{+}+K_{i} \\
-\beta \eta_{i}^{-}+\eta_{i}^{-}=\beta \cdot \boldsymbol{h}_{\boldsymbol{f}} \cdot \boldsymbol{\xi}_{\boldsymbol{i}}^{+}-\boldsymbol{h}_{\boldsymbol{f}} \cdot \xi_{\boldsymbol{i}}^{-}+K_{i}
\end{array}\right.\right. \\
& {\left[\begin{array}{cc}
1 & -\beta \\
-\beta & 1
\end{array}\right] \cdot\left[\begin{array}{c}
\eta_{i}^{+} \\
\eta_{i}^{-}
\end{array}\right]=\left[\begin{array}{c}
\beta \cdot \boldsymbol{h}_{\mathbf{0}} \cdot \xi_{\boldsymbol{i}}^{-}-\boldsymbol{h}_{\mathbf{0}} \cdot \xi_{i}^{+}+K_{i} \\
\beta \cdot \boldsymbol{h}_{\boldsymbol{f}} \cdot \xi_{\boldsymbol{i}}^{+}-\boldsymbol{h}_{\boldsymbol{f}} \cdot \xi_{\boldsymbol{i}}^{-}+K_{i}
\end{array}\right] \quad \Rightarrow \quad\left[\begin{array}{c}
\eta_{i}^{+} \\
\eta_{i}^{-}
\end{array}\right]=\frac{1}{1-\beta^{2}} \cdot\left[\begin{array}{cc}
1 & \beta \\
\beta & 1
\end{array}\right] \cdot\left[\begin{array}{l}
\beta \cdot \boldsymbol{h}_{\mathbf{0}} \cdot \xi_{\boldsymbol{i}}^{-}-\boldsymbol{h}_{\mathbf{0}} \cdot \xi_{\boldsymbol{i}}^{+}+K_{i} \\
\beta \cdot \boldsymbol{h}_{\boldsymbol{f}} \cdot \xi_{\boldsymbol{i}}^{+}-\boldsymbol{h}_{\boldsymbol{f}} \cdot \boldsymbol{\xi}_{\boldsymbol{i}}^{-}+K_{i}
\end{array}\right]}
\end{aligned}
$$

Introducing a new parameter:

$$
\gamma=\frac{1}{1-\beta^{2}}
$$

$$
\left[\begin{array}{c}
\eta_{i}^{+} \\
\eta_{i}^{-}
\end{array}\right]=\left[\begin{array}{cc}
\gamma & \gamma \beta \\
\gamma \beta & \gamma
\end{array}\right] \cdot\left[\begin{array}{l}
\beta \cdot \boldsymbol{h}_{\mathbf{0}} \cdot \boldsymbol{\xi}_{\boldsymbol{i}}^{-}-\boldsymbol{h}_{\mathbf{0}} \cdot \boldsymbol{\xi}_{\boldsymbol{i}}^{+}+K_{i} \\
\beta \cdot \boldsymbol{h}_{\boldsymbol{f}} \cdot \boldsymbol{\xi}_{\boldsymbol{i}}^{+}-\boldsymbol{h}_{\boldsymbol{f}} \cdot \xi_{\boldsymbol{i}}^{-}+K_{i}
\end{array}\right]
$$

Poiseuille Flow in a plane channel

$$
\left\{\begin{array}{l}
\eta_{i}^{+}=\gamma\left(\beta^{2} \boldsymbol{h}_{\boldsymbol{f}}-\boldsymbol{h}_{\mathbf{0}}\right) \cdot \xi_{i}^{+}+\gamma \beta\left(\boldsymbol{h}_{\mathbf{0}}-\boldsymbol{h}_{\boldsymbol{f}}\right) \cdot \xi_{\boldsymbol{i}}^{-}+\gamma K_{i}(\beta+1) \\
\eta_{i}^{-}=\gamma \beta\left(\boldsymbol{h}_{\boldsymbol{f}}-\boldsymbol{h}_{\mathbf{0}}\right) \cdot \xi_{\boldsymbol{i}}^{+}+\gamma\left(\beta^{2} \boldsymbol{h}_{\mathbf{0}}-\boldsymbol{h}_{\boldsymbol{f}}\right) \cdot \xi_{\boldsymbol{i}}^{-}+\gamma K_{i}(\beta+1)
\end{array}\right.
$$

Calling $\theta=\gamma(\beta+1)$

$$
\left\{\begin{array}{l}
\eta_{i}^{+}=\gamma\left(\beta^{2} \boldsymbol{h}_{\boldsymbol{f}}-\boldsymbol{h}_{\mathbf{0}}\right) \cdot \xi_{i}^{+}+\gamma \beta\left(\boldsymbol{h}_{\mathbf{0}}-\boldsymbol{h}_{\boldsymbol{f}}\right) \cdot \xi_{\boldsymbol{i}}^{-}+\theta K_{i} \\
\eta_{i}^{-}=\gamma \beta\left(\boldsymbol{h}_{\boldsymbol{f}}-\boldsymbol{h}_{\mathbf{0}}\right) \cdot \xi_{i}^{+}+\gamma\left(\beta^{2} \boldsymbol{h}_{\mathbf{0}}-\boldsymbol{h}_{\boldsymbol{f}}\right) \cdot \xi_{\boldsymbol{i}}^{-}+\theta K_{i}
\end{array}\right.
$$

Replacing them in the constrained expressions, we have:

$$
\begin{aligned}
& Y_{i}^{+}=\left(\boldsymbol{h}-\gamma \boldsymbol{h}_{\mathbf{0}}+\gamma \beta^{2} \boldsymbol{h}_{\boldsymbol{f}}\right) \cdot \xi_{\boldsymbol{i}}^{+}+\gamma \beta\left(\boldsymbol{h}_{\mathbf{0}}-\boldsymbol{h}_{\boldsymbol{f}}\right) \cdot \xi_{\boldsymbol{i}}^{-}+\theta K_{i} \\
& Y_{i}^{-}=\gamma \beta\left(\boldsymbol{h}_{\boldsymbol{f}}-\boldsymbol{h}_{\mathbf{0}}\right) \cdot \xi_{\boldsymbol{i}}^{+}+\left(\boldsymbol{h}-\gamma \boldsymbol{h}_{\boldsymbol{f}}+\gamma \beta^{2} \boldsymbol{h}_{\mathbf{0}}\right) \cdot \xi_{\boldsymbol{i}}^{-}+\theta K_{i}
\end{aligned}
$$

Poiseuille Flow in a plane channel

And replacing the constrained expressions in the equations of our problem, we have:

$$
\begin{aligned}
& \left(-c \log \left(\mu_{i}\right) \boldsymbol{h}^{\prime}+\boldsymbol{h}-\gamma \boldsymbol{h}_{0}+\gamma \beta^{2} \boldsymbol{h}_{\boldsymbol{f}}\right) \cdot \xi_{i}^{+}+\gamma \beta\left(\boldsymbol{h}_{0}-\boldsymbol{h}_{f}\right) \cdot \xi_{i}^{-}-\sum_{k=1}^{N} w_{k} \frac{1}{\mu_{k}} \Psi\left(\mu_{k}\right)\left[\left(\boldsymbol{h}-\theta \boldsymbol{h}_{0}+\theta \beta \boldsymbol{h}_{\boldsymbol{f}}\right) \cdot \xi_{\boldsymbol{k}}^{+}+\left(\boldsymbol{h}-\theta \boldsymbol{h}_{\boldsymbol{f}}+\theta \beta \boldsymbol{h}_{\mathbf{0}}\right) \cdot \xi_{i}^{-}\right]=-\theta K_{i}+\sum_{k=1}^{N} 2 \theta K_{k} \\
& \gamma \beta\left(\boldsymbol{h}_{\boldsymbol{f}}-\boldsymbol{h}_{\mathbf{0}}\right) \cdot \xi_{i}^{+}+\left(c \log \left(\mu_{i}\right) \boldsymbol{h}^{\prime}+\boldsymbol{h}-\gamma \boldsymbol{h}_{\boldsymbol{f}}+\gamma \beta^{2} \boldsymbol{h}_{\mathbf{0}}\right) \cdot \xi_{i}^{-}-\sum_{k=1}^{N} w_{k} \frac{1}{\mu_{k}} \Psi\left(\mu_{k}\right)\left[\left(\boldsymbol{h}-\theta \boldsymbol{h}_{\mathbf{0}}+\theta \beta \boldsymbol{h}_{\boldsymbol{f}}\right) \cdot \xi_{\boldsymbol{k}}^{+}+\left(\boldsymbol{h}-\theta \boldsymbol{h}_{\boldsymbol{f}}+\theta \beta \boldsymbol{h}_{\mathbf{0}}\right) \cdot \xi_{\boldsymbol{i}}^{-}\right]=-\theta K_{i}+\sum_{k=1}^{N} 2 \theta K_{k}
\end{aligned}
$$

For the sake of simplicity, we write the inhomogeneous term as:

$$
b_{i}^{+}=-\theta K_{i}+\sum_{k=1}^{N} 2 \theta K_{k} \quad \text { and } \quad b_{i}^{-}=-\theta K_{i}+\sum_{k=1}^{N} 2 \theta K_{k}
$$

Expanding the summations, we get the following matrix form:

$$
\left[\begin{array}{cc}
-c \log \left(\mu_{i}\right) \boldsymbol{h}^{\prime}+\boldsymbol{h}-\gamma \boldsymbol{h}_{0}+\gamma \beta^{2} \boldsymbol{h}_{f}-w_{k} \frac{1}{\mu_{k}} \Psi\left(\mu_{k}\right)\left(\boldsymbol{h}-\theta \boldsymbol{h}_{0}+\theta \beta \boldsymbol{h}_{f}\right) & \gamma \beta\left(\boldsymbol{h}_{0}-\boldsymbol{h}_{f}\right)-w_{k} \frac{1}{\mu_{k}} \Psi\left(\mu_{k}\right)\left(\boldsymbol{h}-\theta \boldsymbol{h}_{\boldsymbol{f}}+\theta \beta \boldsymbol{h}_{\mathbf{0}}\right) \\
\gamma \beta\left(\boldsymbol{h}_{\boldsymbol{f}}-\boldsymbol{h}_{\mathbf{0}}\right)-w_{k} \frac{1}{\mu_{k}} \Psi\left(\mu_{k}\right)\left(\boldsymbol{h}-\theta \boldsymbol{h}_{\mathbf{0}}+\theta \beta \boldsymbol{h}_{\boldsymbol{f}}\right) & c \log \left(\mu_{i}\right) \boldsymbol{h}^{\prime}+\boldsymbol{h}-\gamma \boldsymbol{h}_{\boldsymbol{f}}+\gamma \beta^{2} \boldsymbol{h}_{\mathbf{0}}-w_{k} \frac{1}{\mu_{k}} \Psi\left(\mu_{k}\right)\left(\boldsymbol{h}-\theta \boldsymbol{h}_{\boldsymbol{f}}+\theta \beta \boldsymbol{h}_{\mathbf{0}}\right)
\end{array}\right] \cdot\left[\begin{array}{l}
\xi_{\boldsymbol{i}}^{+} \\
\xi_{\boldsymbol{i}}^{-}
\end{array}\right]=\left[\begin{array}{l}
b_{i}^{+} \\
b_{\boldsymbol{i}}^{-}
\end{array}\right]
$$

For the sake of simplicity we write the following terms as:

$$
\begin{array}{lr}
\boldsymbol{\square}_{i}=-c \log \left(\mu_{i}\right) \boldsymbol{h}^{\prime T}+\boldsymbol{h}^{T}-\gamma \boldsymbol{h}_{0}^{T}+\gamma \beta^{2} \boldsymbol{h}_{f}^{T} & \boldsymbol{\Theta}_{i}=c \log \left(\mu_{i}\right) \boldsymbol{h}^{\prime T}+\boldsymbol{h}^{T}-\gamma \boldsymbol{h}_{f}^{T}+\gamma \beta^{2} \boldsymbol{h}_{\mathbf{0}}^{T} \\
\boldsymbol{\square}_{k}=-w_{k} \frac{1}{\mu_{k}} \Psi\left(\mu_{k}\right)\left(\boldsymbol{h}-\theta \boldsymbol{h}_{\mathbf{0}}+\theta \beta \boldsymbol{h}_{\boldsymbol{f}}\right)^{T} & \boldsymbol{q}_{k}=\gamma \beta\left(\boldsymbol{h}_{0}-\boldsymbol{h}_{f}\right)^{T} \\
\boldsymbol{\oplus}_{k}=-w_{k} \frac{1}{\mu_{k}} \Psi\left(\mu_{k}\right)\left(\boldsymbol{h}-\theta \boldsymbol{h}_{\boldsymbol{f}}+\theta \beta \boldsymbol{h}_{\mathbf{0}}\right)^{T} & \boldsymbol{๗}_{k}=\gamma \beta\left(\boldsymbol{h}_{\boldsymbol{f}}-\boldsymbol{h}_{\mathbf{0}}\right)
\end{array}
$$

Poiseuille Flow in a plane channel

It becomes:

$$
\left[\begin{array}{cc}
\square_{i}+\square_{k} & \boldsymbol{o}_{k}+\boldsymbol{\vartheta}_{k} \\
\varsigma_{k}+\square_{k} & \Theta_{i}+\Theta_{k}
\end{array}\right] \cdot\left[\begin{array}{l}
\xi_{i}^{+} \\
\xi_{i}^{-}
\end{array}\right]=\left[\begin{array}{l}
b_{i}^{+} \\
b_{i}^{-}
\end{array}\right]
$$

$$
\begin{array}{rlrl}
\boldsymbol{■}_{i} & =-c \log \left(\mu_{i}\right) \boldsymbol{h}^{T}+\boldsymbol{h}^{T}-\gamma \boldsymbol{h}_{0}^{T}+\gamma \beta^{2} \boldsymbol{h}_{\boldsymbol{f}}^{T} & \boldsymbol{Q}_{i}=c \log \left(\mu_{i}\right) \boldsymbol{h}^{\boldsymbol{T}}+\boldsymbol{h}^{T}-\gamma \boldsymbol{h}_{\boldsymbol{f}}^{T}+\gamma \beta^{2} \boldsymbol{h}_{\mathbf{0}}^{T} \\
\boldsymbol{\varpi}_{k}=-w_{k} \frac{1}{\mu_{k}} \Psi\left(\mu_{k}\right)\left(\boldsymbol{h}-\theta \boldsymbol{h}_{0}+\theta \beta \boldsymbol{h}_{f}\right)^{T} & \boldsymbol{\alpha}_{k}=\gamma \beta\left(\boldsymbol{h}_{0}-\boldsymbol{h}_{f}\right)^{T} \\
\boldsymbol{\oplus}_{k}=-w_{k} \frac{1}{\mu_{k}} \Psi\left(\mu_{k}\right)\left(\boldsymbol{h}-\theta \boldsymbol{h}_{\boldsymbol{f}}+\theta \beta \boldsymbol{h}_{\mathbf{0}}\right)^{T} & \boldsymbol{\Phi}_{k}=\gamma \beta\left(\boldsymbol{h}_{\boldsymbol{f}}-\boldsymbol{h}_{\mathbf{0}}\right)
\end{array}
$$

And we can obtain the following system:

$$
k=1
$$

$$
k=2
$$

$$
k=3
$$

$$
k=N
$$

Poiseuille Flow in a plane channel

To find the vector of unknowns

$$
\xi=\left[\xi_{1}^{+} ; \xi_{1}^{-} ; \xi_{2}^{+} ; \xi_{2}^{-} ; \ldots \ldots ; \xi_{N}^{+} ; \xi_{N}^{-}\right]
$$

we need to solve the following linear system via Least-Squares :

$$
\boldsymbol{A} \cdot \boldsymbol{\xi}=\boldsymbol{B}
$$

where:

$$
\xi_{i}^{ \pm}=(m \times 1)
$$

$$
\xi=(2 \cdot m \cdot N \times 1)
$$

$$
b_{i}^{ \pm}=(M \times 1)
$$

$$
\boldsymbol{B}=(2 \cdot M \cdot N \quad \times 1)
$$

$\boldsymbol{\square}_{i}, \boldsymbol{O}_{i}, \boldsymbol{\square}_{k}, \boldsymbol{\omega}_{k}, \boldsymbol{\iota}_{k}, \boldsymbol{\Theta}_{k}=(M \times m)$

$$
\boldsymbol{A}=(2 \cdot M \cdot N \times 2 \cdot m \cdot N)
$$

Once the linear system is solved, the solutions for positive and negative flux can be found as:

$$
\begin{aligned}
& Y^{+}=\left(\boldsymbol{h}-\gamma \boldsymbol{h}_{\mathbf{0}}+\gamma \beta^{2} \boldsymbol{h}_{\boldsymbol{f}}\right) \cdot \xi^{+}+\gamma \beta\left(\boldsymbol{h}_{\mathbf{0}}-\boldsymbol{h}_{\boldsymbol{f}}\right) \cdot \xi^{-}+\theta K \\
& Y^{-}=\gamma \beta\left(\boldsymbol{h}_{\boldsymbol{f}}-\boldsymbol{h}_{\mathbf{0}}\right) \cdot \xi^{+}+\left(\boldsymbol{h}-\gamma \boldsymbol{h}_{\boldsymbol{f}}+\gamma \beta^{2} \boldsymbol{h}_{\mathbf{0}}\right) \cdot \xi^{-}+\theta K
\end{aligned}
$$

Poiseuille Flow Results

THE UNIVERSITY OF ARIZONA

Research, Discovery \& Innovation

Code Analysis and Benchmarking

To demonstrate the precision of the TFC in solving the problem, we report the macroscopic velocity profile, that according to [5] is given by:

$$
q(\tau)=\frac{1}{k \theta} \int_{-\infty}^{\infty} \Psi(u) Z(\tau, u) d u
$$

By replacing the expression of $Z(\tau, u)$ into $q(\tau)$ we get

$$
q(\tau)=\frac{1}{2}\left(1-a^{2}+\tau^{2}\right)-Y_{0}(\tau)
$$

where

$$
Y_{0}(\tau)=\int_{-\infty}^{\infty} \Psi(u) Y(\tau, u) d u
$$

Which it can be computed making use of a Gaussian-Legendre quadrature

$$
Y_{0}(\tau)=\int_{-1}^{1} \frac{1}{\mu} \Psi(\mu) Y(\tau, \mu) d \mu=\sum_{k=1}^{N} w_{k} \frac{1}{\mu_{k}} \Psi\left(\mu_{k}\right)\left[Y_{i}^{+}-Y_{i}^{-}\right]
$$

Poiseuille Flow Results

Microscopic velocity profile $\boldsymbol{q}(\boldsymbol{\tau})$

TABLE 1. The macroscopic velocity profile $q(\tau)$ for a plan channel of half width $a=1$, with $m=50 \pm 2, M=200$, and $N=22$. All the digits match the benchmark published by Barichello et al. [3]

RGD via TFC
vs.
CPU time for the Least-
Squares $\cong 0.24$ seconds

$$
N=22
$$

$\boldsymbol{\tau}$	$\boldsymbol{\alpha}=\mathbf{0 . 5 0}$	$\boldsymbol{\alpha}=\mathbf{0 . 8 0}$	$\boldsymbol{\alpha}=\mathbf{0 . 8 8}$	$\boldsymbol{\alpha}=\mathbf{0 . 9 6}$	$\boldsymbol{\alpha}=\mathbf{1 . 0 0}$
0.0	-3.65222	-2.31962	-2.11741	-1.94880	-1.87458
0.1	-3.64484	-2.31215	-2.10992	-1.94129	-1.86706
0.2	-3.62258	-2.28964	-2.08735	-1.91866	-1.84440
0.3	-3.58512	-2.25176	-2.04937	-1.88058	-1.80627
0.4	-3.53185	-2.19790	-1.99537	-1.82644	-1.75206
0.5	-3.46179	-2.12707	-1.92435	-1.75524	-1.68078
0.6	-3.37332	-2.03767	-1.83472	-1.66539	-1.59082
0.7	-3.26373	-1.92699	-1.72378	-1.55421	-1.47952
0.8	-3.12792	-1.79004	-1.58657	-1.41674	-1.34193
0.9	-2.95402	-1.61528	-1.41163	-1.24164	-1.16676
1.0	-2.67641	-1.34037	-1.13753	$-9.68381 \mathrm{e}-1$	$-8.93925 \mathrm{e}-1$

Poiseuille Flow Results

Flow rate $\mathbf{Q}(\boldsymbol{a})$

Table 2. The flow rate $Q(a)$ for Barichello and Siewert digits [3]

Furthermore, we computed the flow rate

$$
Q=-\frac{1}{2 a^{2}} \int_{-a}^{a} q(\tau) d \tau
$$

And by replacing the expression of $q(\tau)$ into $Q(\tau)$ we get

$$
Q=\frac{1}{2 a^{2}} \int_{-a}^{a} Y_{0}(\tau) d \tau-\frac{1}{2 a}\left(1-\frac{2}{3} a^{2}\right)
$$

$2 a$	$\alpha=\mathbf{0 . 5 0}$	$\alpha=\mathbf{0 . 8 0}$	$\alpha=\mathbf{0 . 8 8}$	$\alpha=\mathbf{0 . 9 6}$	$\alpha=\mathbf{1 . 0 0}$
0.05	5.22330	3.08971	2.73834	2.43735	2.30226
0.10	4.55641	2.70774	2.40605	2.14824	2.03271
0.30	3.77847	2.24477	2.00107	1.79451	1.70247
0.50	3.54437	2.10227	1.87662	1.68634	1.60187
0.70	3.43767	2.03877	1.82201	1.63985	1.55919
0.90	3.38389	2.00924	1.79764	1.62022	1.54180
1.00	3.36822	2.00187	1.79206	1.61631	1.53868
2.00	3.37657	2.04139	1.83856	1.66937	1.59486
5.00	3.77440	2.43823	2.23506	2.06548	1.99077
7.00	4.08811	2.74611	2.54144	2.37038	2.29493
9.00	4.41019	3.06346	2.85756	2.68530	2.60925

- $M=40$ and $m=24$, for $\mathbf{2 a}=\mathbf{0 . 0 5}$, with computational time $=0.04 \mathrm{~s}$.
- $\mathrm{M}=300$ and $\mathrm{m}=90$, for $\mathbf{2 a}=9$, with computational time $=1.6 \mathrm{~s}$.

All the results are obtained with a velocity discretization of $\mathrm{N}=30$.

Flow rate $\mathbf{Q}(\boldsymbol{a})$

Finally, we pushed the code increasing the discretization of space, velocity, and number of Chebyshev Polynomials to reach the 7 digits benchmarks published by Ganapol [6].

Parameters used to compute the flow rate $Q(a)$ for each channel width.

$\mathbf{2 a}$	\boldsymbol{N}	\boldsymbol{M}	\boldsymbol{m}	comp. time $[\mathbf{s}]$
0.05	69	100	34	1.35
0.10	59	120	54	2.39
0.30	35	140	60	0.78
0.50	30	140	60	0.51
0.70	30	140	60	0.52
0.90	30	200	67	0.81
1.00	30	200	74	0.99
2.00	24	400	90	1.30
5.00	24	700	130	4.31
7.00	24	900	150	6.92
9.00	24	1400	150	10.12

Table 3. The flow rate $Q(a)$ for Ganapol digits [6]

$2 a$	$\alpha=0.50$	$\alpha=0.80$	$\alpha=0.88$	$\alpha=0.96$	$\alpha=1.00$
0.05	5.2232964	3.0897113	2.7383403	2.4373544	2.3022564
0.10	4.5564062	2.7077408	2.4060457	2.1482414	2.0327143
0.30	3.7784723	2.2447708	2.0010675	1.7945088	1.7024740
0.50	3.5443709	2.1022657	1.8766202	1.6863424	1.6018742
0.70	3.4376693	2.0387670	1.8220109	1.6398495	1.5591860
0.90	3.3838869	2.0092408	1.7976360	1.6202230	1.5417996
1.00	3.3682182	2.0018669	1.7920590	1.6163124	1.5386785
2.00	3.3765738	2.0413852	1.8385632	1.6693655	1.5948569
5.00	3.7744018	2.4382339	2.2350591	2.0654781	1.9907674
7.00	4.0881078	2.7461124	2.5414362	2.3703751	2.2949322
9.00	4.4101902	3.0634644	2.8575645	2.6852950	2.6092536

Contents

- Introduction
- Overview
- Goal
- Background
- Boltzmann Transport Equations for Rarefied Gas Dynamics
- TFC approach to solve Linear ODEs
- Poiseuille Flow in a plane channel
- Formulation
- Results
- Thermal Creep Flow in a plane channel
- Formulation
- Results

Thermal Creep Flow in a plane channel

Research, Discovery \& Innovation

Following the formulation proposed by Ganapol [7], and taking some moments of the linearized BGK equation, the problem to be solved is the following:

$$
c_{x} K_{0}+\frac{1}{2} R_{z}+\frac{1}{2} K_{z}\left(c^{2}+\frac{3}{2}\right)+c_{x} \frac{\partial}{\partial x} Z\left(x, c_{x}\right)+\lambda_{0} Z\left(x, c_{x}\right)=\lambda_{0} \pi^{-1 / 2} \int_{-\infty}^{\infty} e^{-c_{x}^{2}} Z\left(x, c_{x}\right) d c_{x}
$$

for $x \in\left(-\frac{d}{2}, \frac{d}{2}\right)$ and $\mathrm{c}_{\mathrm{x}} \in(-\infty, \infty)$, with the following reflecting boundary conditions:

$$
\left\{\begin{array}{c}
Z\left(-\frac{d}{2}, c_{x}\right)=\alpha u_{w}+(1-\alpha) Z\left(-\frac{d}{2},-c_{x}\right) \\
Z\left(\frac{d}{2},-c_{x}\right)=\alpha u_{w}+(1-\alpha) Z\left(\frac{d}{2}, c_{x}\right)
\end{array}\right.
$$

for $\mathrm{c}_{\mathrm{x}} \in(0, \infty)$. Here, d is the channel thickness, u_{w} is the wall velocity, R_{z} and K_{z} are gradients in the flow direction z, K is the scattering kernel, K_{0} is proportional to K, λ_{0} is proportional to the frequency of collisions between the atoms, x is the spatial variable, $\alpha \in(0,1]$ is the accomodation coefficient, and the moment $Z\left(x, c_{x}\right)$ is:

$$
Z\left(x, c_{x}\right)=\pi^{-1} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(c_{y}^{2}+c_{z}^{2}\right)^{2}} c_{z} h\left(x, c_{x}, c_{y}, c_{z}\right) d c_{y} d c_{z}
$$

Where $\left(c_{x}, c_{y}, c_{z}\right)$ are the three components of the molecular velocity and h is a perturbation from Maxwell distribution.

Thermal Creep Flow Results

THE UNIVERSITY OF ARIZONA
Research, Discovery \& Innovation

Microscopic velocity profile $\boldsymbol{q}(\boldsymbol{\tau})$

Table 1: The macroscopic velocity profile $q(a, \alpha)$ for $\tau=0$. All the digits match the benchmark published by Ganapol

$\mathbf{2 a} \boldsymbol{a}$	$\boldsymbol{\alpha}=\mathbf{0 . 5 0}$	$\boldsymbol{\alpha}=\mathbf{0 . 8 0}$	$\boldsymbol{\alpha}=\mathbf{0 . 8 8}$	$\boldsymbol{\alpha}=\mathbf{0 . 9 6}$	$\boldsymbol{\alpha}=\mathbf{1 . 0 0}$
0.05	$4.2225003 \mathrm{e}-02$	$2.8228521 \mathrm{e}-02$	$2.5723898 \mathrm{e}-02$	$2.3529621 \mathrm{e}-02$	$2.2529767 \mathrm{e}-02$
0.1	$6.5095538 \mathrm{e}-02$	$4.5719362 \mathrm{e}-02$	$4.2146466 \mathrm{e}-02$	$3.8989742 \mathrm{e}-02$	$3.7543105 \mathrm{e}-02$
0.3	$1.1876639 \mathrm{e}-01$	$9.2674511 \mathrm{e}-02$	$8.7524944 \mathrm{e}-02$	$8.2887055 \mathrm{e}-02$	$8.0734083 \mathrm{e}-02$
0.5	$1.5048508 \mathrm{e}-01$	$1.2482013 \mathrm{e}-01$	$1.1954218 \mathrm{e}-01$	$1.1473143 \mathrm{e}-01$	$1.1248014 \mathrm{e}-01$
0.7	$1.7295120 \mathrm{e}-01$	$1.4982556 \mathrm{e}-01$	$1.4492927 \mathrm{e}-01$	$1.4042737 \mathrm{e}-01$	$1.3830819 \mathrm{e}-01$
0.9	$1.9016554 \mathrm{e}-01$	$1.7032627 \mathrm{e}-01$	$1.6603492 \mathrm{e}-01$	$1.6206351 \mathrm{e}-01$	$1.6018580 \mathrm{e}-01$
1.0	$1.9742092 \mathrm{e}-01$	$1.7932563 \mathrm{e}-01$	$1.7537848 \mathrm{e}-01$	$1.7171628 \mathrm{e}-01$	$1.6998179 \mathrm{e}-01$
2.0	$2.4390839 \mathrm{e}-01$	$2.4205320 \mathrm{e}-01$	$2.4170175 \mathrm{e}-01$	$2.4139906 \mathrm{e}-01$	$2.4126448 \mathrm{e}-01$
5.0	$2.9311382 \mathrm{e}-01$	$3.1685309 \mathrm{e}-01$	$3.2293936 \mathrm{e}-01$	$3.2892781 \mathrm{e}-01$	$3.3188614 \mathrm{e}-01$
7.0	$3.0479340 \mathrm{e}-01$	$3.3544233 \mathrm{e}-01$	$3.4335590 \mathrm{e}-01$	$3.5116476 \mathrm{e}-01$	$3.5503062 \mathrm{e}-01$
9.0	$3.1086362 \mathrm{e}-01$	$3.4515054 \mathrm{e}-01$	$3.5403270 \mathrm{e}-01$	$3.6280930 \mathrm{e}-01$	$3.6715870 \mathrm{e}-01$

Flow rate $Q(a, \alpha)$

Table 3: The flow rate $Q(a, \alpha)$. All the digits match the benchmark published by Ganapol

$\mathbf{2 a}$	$\boldsymbol{\alpha}=\mathbf{0 . 5 0}$	$\boldsymbol{\alpha}=\mathbf{0 . 8 0}$	$\boldsymbol{\alpha}=\mathbf{0 . 8 8}$	$\boldsymbol{\alpha}=\mathbf{0 . 9 6}$	$\alpha=\mathbf{1 . 0 0}$
0.05	-1.6536888	-1.0808651	$-9.7755253 \mathrm{e}-01$	$-8.8675895 \mathrm{e}-01$	$-8.4528926 \mathrm{e}-01$
0.1	-1.2664416	$-8.6598047 \mathrm{e}-01$	$-7.9142819 \mathrm{e}-01$	$-7.2531232 \mathrm{e}-01$	$-6.9492716 \mathrm{e}-01$
0.3	$-7.5808236 \mathrm{e}-01$	$-5.7120721 \mathrm{e}-01$	$-5.3382143 \mathrm{e}-01$	$-4.9997357 \mathrm{e}-01$	$-4.8419925 \mathrm{e}-01$
0.5	$-5.7057229 \mathrm{e}-01$	$-4.5516639 \mathrm{e}-01$	$-4.3103829 \mathrm{e}-01$	$-4.0890573 \mathrm{e}-01$	$-3.9849928 \mathrm{e}-01$
0.7	$-4.6496656 \mathrm{e}-01$	$-3.8645813 \mathrm{e}-01$	$-3.6950994 \mathrm{e}-01$	$-3.5380980 \mathrm{e}-01$	$-3.4637809 \mathrm{e}-01$
0.9	$-3.9538369 \mathrm{e}-01$	$-3.3924285 \mathrm{e}-01$	$-3.2681934 \mathrm{e}-01$	$-3.1522021 \mathrm{e}-01$	$-3.0970011 \mathrm{e}-01$
1.0	$-3.6854346 \mathrm{e}-01$	$-3.2050490 \mathrm{e}-01$	$-3.0976296 \mathrm{e}-01$	$-2.9970005 \mathrm{e}-01$	$-2.9489992 \mathrm{e}-01$
2.0	$-2.2450462 \mathrm{e}-01$	$-2.1292032 \mathrm{e}-01$	$-2.1016135 \mathrm{e}-01$	$-2.0752116 \mathrm{e}-01$	$-2.0624288 \mathrm{e}-01$
5.0	$-1.0753220 \mathrm{e}-01$	$-1.1165695 \mathrm{e}-01$	$-1.1271161 \mathrm{e}-01$	$-1.1374814 \mathrm{e}-01$	$-1.1425975 \mathrm{e}-01$
7.0	$-8.0362907 \mathrm{e}-02$	$-8.5334804 \mathrm{e}-02$	$-8.6615422 \mathrm{e}-02$	$-8.7877804 \mathrm{e}-02$	$-8.8502282 \mathrm{e}-02$
9.0	$-6.4219081 \mathrm{e}-02$	$-6.9077203 \mathrm{e}-02$	$-7.0332976 \mathrm{e}-02$	$-7.1572696 \mathrm{e}-02$	$-7.2186641 \mathrm{e}-02$

Table 2: The macroscopic velocity profile $q(a, \alpha)$ for $\tau=a$. All the digits match the benchmark published by Ganapol

$\mathbf{2 a} \boldsymbol{a}$	$\boldsymbol{\alpha}=\mathbf{0 . 5 0}$	$\boldsymbol{\alpha}=\mathbf{0 . 8 0}$	$\alpha=\mathbf{0 . 8 8}$	$\alpha=\mathbf{0 . 9 6}$	$\alpha=\mathbf{1 . 0 0}$
0.05	$3.9116032 \mathrm{e}-02$	$2.3909939 \mathrm{e}-02$	$2.1108934 \mathrm{e}-02$	$1.8626644 \mathrm{e}-02$	$1.7485627 \mathrm{e}-02$
0.1	$5.8802435 \mathrm{e}-02$	$3.7008351 \mathrm{e}-02$	$3.2848608 \mathrm{e}-02$	$2.9123484 \mathrm{e}-02$	$2.7398906 \mathrm{e}-02$
0.3	$1.0041326 \mathrm{e}-01$	$6.7026531 \mathrm{e}-02$	$6.0133956 \mathrm{e}-02$	$5.3818715 \mathrm{e}-02$	$5.0849454 \mathrm{e}-02$
0.5	$1.2148165 \mathrm{e}-01$	$8.3735395 \mathrm{e}-02$	$7.5575613 \mathrm{e}-02$	$6.7996314 \mathrm{e}-02$	$6.4399698 \mathrm{e}-02$
0.7	$1.3456419 \mathrm{e}-01$	$9.4790899 \mathrm{e}-02$	$8.5911823 \mathrm{e}-02$	$7.7583115 \mathrm{e}-02$	$7.3604566 \mathrm{e}-02$
0.9	$1.4345748 \mathrm{e}-01$	$1.0267633 \mathrm{e}-01$	$9.3351726 \mathrm{e}-02$	$8.4539468 \mathrm{e}-02$	$8.0308472 \mathrm{e}-02$
1.0	$1.4689594 \mathrm{e}-01$	$1.0581901 \mathrm{e}-01$	$9.6334414 \mathrm{e}-02$	$8.7343031 \mathrm{e}-02$	$8.3016855 \mathrm{e}-02$
2.0	$1.6430194 \mathrm{e}-01$	$1.2275654 \mathrm{e}-01$	$1.1261926 \mathrm{e}-01$	$1.0283132 \mathrm{e}-01$	$9.8061828 \mathrm{e}-02$
5.0	$1.7374607 \mathrm{e}-01$	$1.3300605 \mathrm{e}-01$	$1.2271306 \mathrm{e}-01$	$1.1264794 \mathrm{e}-01$	$1.0769889 \mathrm{e}-01$
7.0	$1.7467018 \mathrm{e}-01$	$1.3408240 \mathrm{e}-01$	$1.2379106 \mathrm{e}-01$	$1.1371337 \mathrm{e}-01$	$1.0875303 \mathrm{e}-01$
9.0	$1.7495630 \mathrm{e}-01$	$1.3442089 \mathrm{e}-01$	$1.2413143 \mathrm{e}-01$	$1.1405110 \mathrm{e}-01$	$1.0908783 \mathrm{e}-01$

$\mathbf{2 a}$	\boldsymbol{N}	\boldsymbol{M}	\boldsymbol{m}	comp. time $[\mathbf{s}]$
0.05	69	100	34	1.35
0.10	59	120	54	2.39
0.30	35	140	60	0.78
0.50	30	140	60	0.51
0.70	30	140	60	0.52
0.90	30	200	67	0.81
1.00	30	200	74	0.99
2.00	24	400	90	1.30
5.00	24	700	130	4.31
7.00	24	900	150	6.92
9.00	24	1400	150	10.12

Parameters used to compute the flow rate $Q(a)$ for each channel width.

Contents

- Introduction
- Overview
- Goal
- Background
- Boltzmann Transport Equations for Rarefied Gas Dynamics
- TFC annroach to solve Linear ODFs
- Poiseuille Flow in a plane channel
- Formulation
- Results
- Thermal Creep Flow in a plane channel
- Formulation
- Resıilt
- Conclusions and Outlooks

Conclusions and Outlooks

- The RGD problems are solved via TFC
- The accuracy of the results is compared with the published benchmarks
- Straightforward implementation
- TFC has also been applied to Radiative Transfer Equations (RTE)
- Isotropic problems
- Anisotropic Problems
- Future developments (via X-TFC)
- To solve the 3D time-dependent RGD problems
- To solve the 3D time-dependent RTE
- To solve Neutron Transport Equations

Thanks for the attention

Questions time

Mario De Florio
mariodf@email.arizona.edu

THE UNIVERSITY OF ARIZONA
Research, Discovery
\& Innovation

