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A few key questions

How fast are Himalayan glacial lakes forming and
growing?

How is suspended sediment implicated in radiative
transfer, mass and energy balance of lakes and glaciers?

What is the energy and mass balance of glacial lakes
and lakes’ effects on glacier mass balance?



GLAM- Lakes (empirical- Shugar leads)
GLAM- Ice Flow (empirical-Haritashya leads)
_ " GLAM- Icebergs (empirical-Watson leads) *

Y GLAM- BioLith RT (numerical-Furfaro/Schiassi .
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Today mostly this

GLAM- LITE (Lake, Icemass, and Thermal Energy
Balance)(analytical- Kargel leads)



Spatio-temporal glacial lake mapping using
Google Earth Engine

Dan H Shugar
& Aaron Burr




Goal: map only glacial lakes accurately, automatically




Goal: map only glacial lakes accurately, automatically
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Automated & manual comparison at Imja Tsho
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« Generally good fit

between manual
(blue) and automated
digitizing (black).

Some errors due to
brash ice, bergy bits,
few cloud-free
scenes in given year,
etc.

Next steps —
incorporate ASTER,
make code elegant
SO works across
larger area through
time.
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Thulagi Glacier Lake, Nepal

I Field photographs, J. Kargel (May 3, 2013 °
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—arly October




—arly November first freeze
0C




January thick lake ice
67C




April thaw
/O °C, thin melting ice




May warmup and free thermal convection
0-4 °C
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July




Late September, Autumn free convection
4°C
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—arly October




July- Glacier is present with metastable stratification
10°C 0°C meltwater plumes




Wind-driven iceberg motion and forced convection mixes
the lake down to iceberg roots

4-degree bottom water, stable stratification



Planet

Drone image on SfM, reprojected Drone topography on SfM Height
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Thulagi Glacier/Lake
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(@) 160,000

120,000

iceberg area (m?)

Thulagi Lake calving
and icebergs,
from Planet imagery
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Thulagi Lake iceberg, area and above-surface volume,
from drone imagery, SfM

& 27th October 2017 o 31st October 2017
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Iceberg melting, figure of merit, I:

Thulagi Lake iceberg melting from the Sep 7-9 event. Ice mostly
melted after 60 days.
The intial estimated|544,000 m? of calved ice|= 4.99 x 108 kg
would require 333,000 J/kg to melt
=1.66 x 1014 J.

How plausible is it that so much ice could melt in a few weeks?

MODEL 1: Heat comes from the deep lake thermal reservoir.

(1) Assume reservoir temperature = 4 “C.
(2) Reservoir volume =6.75 x10’ m3 =6.75 x 10'1°kg = 6.75 x 1013 g.

(3) Energy reservoir (above 0 °C) = 2.7 x 104 Cal = 1.13 x 105 J.

(4) CONCLUSION: The deep lake thermal reservoir is a factor of 7
greater than the energy needed to melt all that ice.




Iceberg melting, figure of merit, li:

Thulagi Lake iceberg melting from the Sep 7-9 event. Ice mostly
melted after 60 days.
The intial estimated| 544,000 m® of calved ice = 4.99 x 108 kg
would require 333,000 J/kg to melt
=1.66 x 1014 J.

How plausible is it that so much ice could melt in a few weeks?

MODEL 2: Heat comes from concurrent solar heating.

(1) Thulagi Lake area = 900,000 m2.
(2) Assume 450 W/m? absorption for 4 hours daily for 60 days.

(3) Energy aborption = 3.1 x 1074 J.

(4) CONCLUSION: Concurrent solar heating would add twice as
much energy as needed to melt all the calved ice.




So there is plenty energy to melt the ice.

Where does the rest of the energy go?



So there is plenty energy to melt the ice.
Where does the rest of the energy go?

WE WILL TELL YOU NEXT YEAR!
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(b) Thulagi Lake, temperature data
Oct 28-30, 2017
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Thulagi Lake-Light-Oct2017-ProfileC

| I
Exponential (log-linear) decrease
in light with depth implies a well-
mixed upper 4 meters.

Most absorption and solar heating
IS In the top meter.

The decreased light level indicates
- scattering and absorption far greater
h than measured turbidity allows.

" I.,__

1788.5 " eM-1.6333x) R=0.99053

2 3
Depth, m

Figure of merit
heating calculation.

Half of the
incident unreflected
sunlight is absorbed
within the top 60 cm.

Incident refracted
beam energy
near the surface
= 800 Watts/m?

X 6 hours =17.3 x 106
J.

Half is absorbed
In upper 60 cm
=8.65 x 10° J
= 2.06 x 10° Calories.

2.06 x 10° C/6x10° cm?3
= 3.4 C/cms.

Enough to raise the
temperature by 3.4
degrees.




XRD results and optical index n for Thulagi Lake beach sand

Index of
refraction * smectite present (abundance unknown)

Quartz 314
Plagioclase ~ 27.8
K-feldspar ~ 18.8 .
M |2 ' '[n = 1.54 would approximate all of the
Calcite 7.6 1]

Wollastonite 6.7

e wollastonite tentative

* minor phases (<5 wt%) yet to be identified
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Suspended particle size-frequency distribution
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Glacier Lake Assisted Melting (GLAM)

GLAM BiolLith RT

Lakes Bio-Lithological Optical/RT Modeling, Water
Components Concentration Retrieval/Mapping Effort,
and Lake Temperature Distribution Simulations



Overview

« IOPs, Physics occuring in the water: Absorption coefficient, backscattering
coefficient, extinction coefficient, and single scattering albedo are Inherent
Optical Propertles (IOPs) of a water body. They depend only on the medium
composition

« AOPs, what a satellite sees: Radiance reflectance, remote sensing
reflectance and irradiance reflectance are Apparent Optical Properties
(AOPs) of a water system. They also depend on the incoming light's geometric
distribution

- Stuff in the water (as well as the water itself): Physical components such as
Phytoplankton, detritus, colored dissolved organic matter, and inorganic
particles that are present INn the water body influence the IOPS and hence the
AOPs of the water column

« Water components concentrations, IOPs, and AOPs are related through
mathematical equations called Bio-Lithological Optical/Radiative Transfer
(RT) models [1]. This is what we are building.

e This is why we are building it: The Radiative Transfer affects how much
and where solar energy is absorbed by the water, hence heating of the lake:



Goals

e Development of Bio-Lithological Optical/RT models for
glacier lakes water (forward modeling)

- Validation of Bio-Lithological Optical/RT models via
sensitive analysis and in-situ water samples (from Imja
lake and Thulagi lake, Himalaya)

« Estimating the concentration of the physical components
that are deposited into the lake due to glacier dynamics
via Bio-Lithological Optical/RT model inversion (inverse
modeling)

e Using the retrieved concentrations to run temperature
distribution simulation for the lakes of interest



Forward Modeling
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Achievements

. G LAM B i (o) Lith RT M atl a b VIS Irradiance [W/m?] versus z[m], at t = 6[h]

code for Bio-Lithological
Optical/RT forward and
iInverse modeling, based
on [1,2,3,4]
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In lake water simulations
8]




Coming next

o Water component concentrations retrieval via
GLAM-BioLith RT inversion (classical and

Bayesian)
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