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Introduction: Overview and Motivations

• Optimal Control Problems (OCPs) 
represent are among the most 
interesting optimization problems, 
in many fields, especially in 
aerospace engineering.

• Energy Optimal problems such as 
Landing, Intercept, Rendezvous, 
etc.; are of extreme interest for 
space applications 

• It is important to have robust
algorithms, eventually suitable
for real-time applications.



Introduction: Goals

• To employ Physics-Informed Neural Networks (PINN) to solve a class 
Optimal Control Problems (OCPs) via indirect method

• Generic and space applications

• We consider the class of OCPs with integral quadratic cost

• The focus of this talk is to show the effectiveness of PINN based 
algorithms in solving the class of OCPs considered

• Three different types of PINN frameworks are tested

• Standard PINN [Raissi et al.]

• Physics-Informed Extreme Learning Machine (PIELM) [Dwivedi and 
Srinivasan]

• Extreme Theory of Functional Connections (X-TFC) [Schiassi et al.]



• ELM is a training algorithm for 
shallow NN that randomly 
selects input weights and bias, 
and computes the output weights 
via least-square

• Input weights and bias are 
not tuned during the training

• The convergence of the ELM 
algorithm is proved by Huang et 
al. [2006]

• The convergence is 
guaranteed for any input 
weights and bias randomly 
chosen to any continuous 
probability distribution

ELM algorithm 



Optimal Control Problems

• Optimal Control Problems (OCPs) are generally hard and computationally 

expensive.

• Closed-Loop solutions

• Open-Loop Solutions 

• In general, Open-Loop solutions can be found in two ways

• Direct Method: Transform a continuous problem in a finite NLP problem and 

find the minimum

• Indirect Method: Apply Pontryagin Minimum Principle (PMP) to derive the 

necessary conditions for optimality

• The solution of the OCP reduces to the solution of a Two Point Boundary 

Value Problem (TPBVP) that is a system of ODEs
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Standard PINN

Image taken from: Lu, L., Meng, X., Mao, Z. and Karniadakis, G.E., 2019. DeepXDE: 
A deep learning library for solving differential equations.

arXiv preprint arXiv:1907.04502.

Main Limitations

1. Gradient based methods 
used to minimize the loss

• Computationally 
expensive 

2. Initial Conditions and/or 
Boundary Conditions are 
not analytically satisfied

• Increases the 
computational cost

• Can cause gradient 
pathologies 
(especially when 
DNN are used)

Gradient-based 

methods



PIELM

Part of the image taken from: Lu, L., Meng, X., Mao, Z. and Karniadakis, G.E., 2019. 
DeepXDE: A deep learning library for solving differential equations.

arXiv preprint arXiv:1907.04502.

Main Limitations

1. Gradient based methods 
used to minimize the loss

• Computationally 
expensive 

2. Initial Conditions and/or 
Boundary Conditions are 
not analytically satisfied

• Increases the 
computational cost

• Can cause gradient 
pathologies 
(especially when 
DNN are used)

Least-squares

(or analytically)
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X-TFC

Main Limitations

1. Gradient based methods 
used to minimize the loss

• Computationally 
expensive 

2. Initial Conditions and/or 
Boundary Conditions are 
not analytically satisfied

• Increases the 
computational cost

• Can cause gradient 
pathologies 
(especially when 
DNN are used)

Least-squares

𝒖 = 𝑩 𝒙, 𝒈 𝒙 + 𝑨 𝒙

x

x

Part of the image taken from: Lu, L., Meng, X., Mao, Z. and Karniadakis, G.E., 2019. 
DeepXDE: A deep learning library for solving differential equations.

arXiv preprint arXiv:1907.04502.

(or analytically)



Summary of the PINN Frameworks



PINN-based approach to solving generic OCPs

Pontryagin 

Maximum/ Minimum 

Principle 

Optimal Control Problem

accuracy; for non-linear ODEs, X-TFC appears less sensit ive to the choice of the solut ions init ializat ion for101

the nonlinear least -squares.102

Themanuscript isorganized as follows. First , theX-TFC method isadapted to solveopt imal cont rol problems103

formulated using the indirect method. This approach is then used to solve typical opt imal control problems,104

such as 1)the Feldbaum problem and 2) a series of space guidance opt imal problem. Finally, the results and105

discussions are given in the remaining sect ions.106

2 Ext reme T heory of Funct ional Connect ions A pplied t o Opt imal107

Cont rol Problems108

Opt imal cont rol problems can be formulated as a set of di↵ erent ial equat ions describing the paths of the109

control variables that sat isfies an opt imal criterion, which is usually expressed as the minimizat ion or maxi-110

mizat ion of a cost funct ion. Generally, the cost funct ion expressed in the Bolza form [22] is the sum of two111

terms. The first term is named Meyer cost , and it depends only on the init ial and final state, and the init ial112

and final t ime. The second term is called the Lagrange cost , and it depends on state and cont rol variables113

along all the t rajectory. That is,114

J = Φ(x (t0), t0, x (t f ), t f )
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(1)

subject to the dynamic constraints, expressed as,115

ẋ = f (x (t), u (t), t) (2)

and the boundary condit ions,116

Φ(x (t0), t0) = Φ0 (3)

Φ(x (t f ), t f ) = Φf (4)

where x (t) is the state vector, u (t) is the cont rol vector, t is the independent variable (usually t ime), t0 is117

the init ial t ime, and t f is the final t ime. The terms Φ and L , appearing in Eq.(1) are the end-point cost118

and Lagrangian, respect ively [2]. Hereafter, the authors will only refer to problems without path const raints.119

As previously ment ioned, opt imal control problems can be solved via either direct or indirect methods. The120

approach proposed in this work can be labelled within the indirect methods. According to these methods, the121

opt imal cont rol problems are solved by applying the Pont ryagin Maximum (or Minimum) Principle (PMP)122

[23]. The PMP required the definit ion of the Hamiltonian. That is,123

H = L + λ T f (5)

where λ represent the costate (or adjoint variables). According to the first -order opt imality condit ions of the124

PMP, the opt imal cont rol can be ret rieved by taking the derivat ive of the Hamiltonian with respect to the125

control vector and set it equal to zero,126

@H

@u
= 0 (6)

Once the Eq. (6) is solved for u , the result is plugged into (5). Now applying the the first -order necessary127

condit ions for the state and costate variables we get the following system of ODEs,128

ẋ =
@H

@λ
(7)

λ̇ = −
@H

@x
(8)

Addit ionally, the t ransversality condit ions should be imposed, if any (e.g. when the corresponding state129

variable is free at the init ial/ final t ime). For the sake of completeness, the possible t ransversality condit ions130
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ẋ =
@H

@λ
(7)

λ̇ = −
@H

@x
(8)

Addit ionally, the t ransversality condit ions should be imposed, if any (e.g. when the corresponding state129

variable is free at the init ial/ final t ime). For the sake of completeness, the possible t ransversality condit ions130

3

Boundary Conditions (BCs)

the space of admissible solut ions (i.e., those fully complying with all const raints). In the field of opt imizat ion,100

this has been done by expanding the free funct ion by a set of basis funct ions (e.g., Fourier series or orthogonal101

polynomials, such as Legendre or Chebyshev polynomials) whose coefficients are found by direct applicat ion102

of a least -squares algorithms. Regardless of the type of const raints (i.e. init ial-, boundary-, or mult i-value)103

if the problem is linear, then the problem can be solved by a linear least -squares approach [18]. It follows104

that if the problem is nonlinear, an iterat ive least -squares process is used to converge to the solut ion [19].105

In Mortari et al. [18, 19], it was shown that the TFC method can be used to numerically est imate linear106

and nonlinear ordinary di↵ erent ial equat ion solut ions with machine-level error in milliseconds. For this107

reason, TFC is an appealing choice for many di↵ erent real-t ime aerospace applicat ions. For instance, this108

technique has been successfully applied to solve opt imal cont rol problems (OCPs )including energy-opt imal109

[20] and fuel-opt imal landing t rajectories on large planetary bodies [21]. These algorithms generate opt imal110

solut ions to machine level accuracy with computat ional t ime ranging between 10 and 100 milliseconds.111

In this work we ut ilize TFC to solve two low-thrust OCPs for rendezvous in relat ive mot ion: when112

the final t ime is fixed and allowed to vary. Since we are assuming the spacecraft makes use of an elect ric113

propulsion device, each opt imal cont rol problem is const ructed to minimize the energy1 generated by the114

propulsion. Solving the fixed final t ime rendezvous problem with TFC allows the method to be compared115

with a t rue analyt ical solut ion, which is used to establish TFC’s accuracy for solving these types of problems.116

The transversality condit ion that must be sat isfied when final t ime is free int roduces non-linearity and, as117

such, the OCP no longer has an analyt ical solut ion. Thus, the TFC solut ion for the free final t ime case is118

compared with that obtained from the general purpose opt imal cont rol software, GPOPS-I I [22]. Last ly, to119

show that the computat ion speed of TFC is compet it ive with a closed-loop solut ion, the linear quadrat ic120

regulator (LQR) solut ion for the free final t ime case is also compared with TFC.121

The manuscript is organized as follows. In Sect ion 2 a step by step guide for solving an arbit rary BVP122

with TFC is presented, along with how TFC is di↵ erent from current state-of-the-art numerical methods for123

solving OCPs. In Sect ion 3, the necessary and sufficient condit ions that must be sat isfied to solve the final124

t ime fixed and free low-thrust rendezvous OCPs in relat ive mot ion are derived (i.e., the formulat ion of the125

TPBVPs). The analyt ical solut ion to the fixed t ime of flight TPBVP is shown in the same sect ion, along126

with the LQR solut ion to the free t ime of flight TPBVP. Then the guide from Sect ion 2 is used to solve each127

low-thrust rendezvous OCP. Last ly, the results of each solut ion are then presented and discussed in Sect ion 5.128

2 T he T heory of Funct ional Connect ions A pproach t o Solve a129

General Second-Order T PBV P130

For the convenience of the reader, the TFC approach applied to a general single vector second-order two-point131

boundary value problem in the t ime domain is briefly presented. The vector di↵ erent ial equat ion of a typical132

second-order TPBVP can be implicit ly expressed as follows,133
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⌘
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>>>:

yj (t0) = y0j

yj (t f ) = yf j

ẏj (t0) = ẏj 0

ẏj (t f ) = ẏf j

(2)

for i , j = 1, 2, 3 and over the domain t 2 [t0, t f ]. In this di↵ erent ial equat ion, the solut ion is the unknown134

vector equat ion yj (t). Addit ionally, the dist inct ion between the index i and j represents the fact that the135

i t h di↵ erent ial equat ion can be a funct ion of all j components of yj (t). As previously shown, the const rained136

expression can be represented by Eq. (1). Using vector notat ion, Eq. (1) and its derivat ives becomes,137

y
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for j = 1, 2, 3 and where the (`) superscript to the right of the dependent variables refer to the `t h derivat ive138

with respect to the independent variable. For the given const raints in Eq. (2) the support funct ions sk (t)139

can be selected as the following monomial set ,140

1M inimizat ion of energy for elect ric propulsion systems also minimizes propellant (fuel) used.
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ẏj (t0) = ẏj 0
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(2)

for i , j = 1, 2, 3 and over the domain t 2 [t0, t f ]. In this di↵ erent ial equat ion, the solut ion is the unknown134

vector equat ion yj (t). Addit ionally, the dist inct ion between the index i and j represents the fact that the135

i t h di↵ erent ial equat ion can be a funct ion of all j components of yj (t). As previously shown, the const rained136

expression can be represented by Eq. (1). Using vector notat ion, Eq. (1) and its derivat ives becomes,137

y
( ` )
j (t) = g

( ` )
j (t) +

nX

k = 1

⌘k j
s

( ` )

k (t) (3)

for j = 1, 2, 3 and where the (`) superscript to the right of the dependent variables refer to the `t h derivat ive138

with respect to the independent variable. For the given const raints in Eq. (2) the support funct ions sk (t)139

can be selected as the following monomial set ,140

1M inimizat ion of energy for elect r ic propulsion syst ems also minimizes propellant (fuel) used.

3

TPBVP

Solve via 

PINN



Hypersensitive Problem

Solve via 

PINNPMP

OCP TPBVP



Hypersensitive Problem (cont’d)
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Energy Optimal Rendezvous (cont’d)
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Conclusions and Outlooks

• We presented a new algorithm based on PINNs for solving 
general OPCs.

• The class of OCPs with integral quadratic cost is 
considered

• The PINN frameworks are used to solve the TPBVP 
arising from the application of the PMP.

• The algorithm was tested in designing energy optimal 
rendezvous trajectories (and more).

• The CPU time, in order of milliseconds, makes the 
proposed algorithm suitable for on board applications.

• The performances are comparable with the state-of-
the-art software such as GPOPS II.

• Works are in progress to:

• Employing the PINN-based algorithms to tackle a 
wide variety of OPCs (especially OPCs for space 
guidance, navigation, and control).

• Consider path constraints of the states and inequality 
constraints on the control



Thanks for watching =)

https://ssel.arizona.edu/


