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* Optimal Control Problems (OCPs)
represent are among the most
Interesting optimization problems,
In many fields, especially In
aerospace engineering.

* Energy Optimal problems such as
Landing, Intercept, Rendezvous,
etc.; are of extreme interest for
space applications

* It is important to have robust
algorithms, eventually suitable
for real-time applications.
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To employ Physics-Informed Neural Networks (PINN) to solve a class
Optimal Control Problems (OCPs) via indirect method

» (Generic and space applications
We consider the class of OCPs with integral quadratic cost

The focus of this talk 1s to show the effectiveness of PINN based
algorithms In solving the class of OCPs considered

Three different types of PINN frameworks are tested

» Standard PINN [Raissi et al.]

* Physics-Informed Extreme Learning Machine (PIELM) [Dwivedi and
Srinivasan}

» Extreme Theory of Functional Connections (X-TFC) [Schiassi et al.]
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 ELM is atraining algorithm for
shallow NN that randomly )
selects Input weights and bias, P!
and computes the output weights
via least-square

* Input weights and bias are
not tuned during the training

* The convergence of the ELM
algorithm is proved by Huang et X
al. [20006]

* The convergence IS
guaranteed for any Input
welghts and bias randomly
chosen to any continuous
probability distribution

g(x)
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* Optimal Control Problems (OCPs) are generally hard and computationally
expensive.

* Closed-Loop solutions

* |Open-Loop Solutions

* In general, Open-Loop solutions can be found in two ways

* Direct Method: Transform a continuous problem in a finite NLP problem and
find the minimum

* |Indirect Method: Apply Pontryagin Minimum Principle (PMP) to derive the
necessary conditions for optimality

* The solution of the OCP reduces to the solution of a Two Point Boundary
Value Problem (TPBVP) that is a system of ODES




Physics-Informed Neural Networks

Data
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Neural
Networks

Physics
Laws

Physics-Informed Neural Networks (PINN)

Forward
Problems

Inverse
Problems

Data-driven solution of DEs

Solution of DESs

Data-driven discovery of DEs

Data-driven DE parameters discovery
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Image taken from: Lu, L., Meng, X., Mao, Z. and Karniadakis, G.E., 2019. DeepXDE:
A deep learning library for solving differential equations.
arXiv preprint arXiv:1907.04502.
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Part of the image taken from: Lu, L., Meng, X., Mao, Z. and Karniadakis, G.E., 2019.
DeepXDE: A deep learning library for solving differential equations.
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DeepXDE: A deep learning library for solving differential equations.
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PINN with DNN trained via PINN with SLNN trained
Gradient-based methods via ELM algorithms

PIELM

ANN [Dwivedi et al., 2019]

[Lagaris et al., 1998] BeNN LeNN

al., 2018] al., 2018]
[Raissi et al., 2019]

Deep-TFC X-TFC

[Leake et al., 2020] [Schiassi et al., 2020]

TFC
[Mortari et al., 2017]
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Boupgary Conditions (BCs)
Y (to) = Yo,

Optimal Controzl Problem
ts

J = O(X(tg),tg, x(ts),ts) + L (x(t),u(t),t)dt _ — -
[ g T e Solve via

3 Y (to) = Vi,
Pontryagin

Maximum/ Minimum | yj (tf) I yfj PI N N

Principle

X = f (x(1),u(t),1)

—

D(x(to),to) = Do
DO(x(tr), tr) = Dy

—_—

F Ly (0,9 (1), (1) = 0
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OCP TPBVP
1 1
min 525/(x2+u2)dt - 9H L
" T e T
subject to - —%H:)\—:U -
L | . v | Solve via
it | (20 =15 '
0<t<1 PMP _ x(l) PINN
2(0) = 1.5 x(l) =
x(1) =
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method  layers  neurons epochs training time [s] Smax S Umax U
PINN 1 100 1000 10.43 7.63- 102 2.94-10"2 2.64 - 101 1.35-101
PINN 1 100 10000 93.09 5.01-10—4 2.46 - 104 1.51-10"3 5.70 - 10— 4
PINN 1 100 100000 752.04 1.18 - 104 5.43-10° 1.92.104 7.07-107°
PINN 1 100 1000000 5968.13 5.40 - 10—° 2.35-10"° 1.19-10~ % 8.05-10°
PINN 1 100 10000000 59467.86 1.54-107° 5.21-10° 3.87-107° 1.32-107°
Hyperparameters PINN 4 25 10000000 04878.03 262-10-6  802-10-7 5.13.-10-6  1.77-10-6
- - PINN 10 10 10000000 149527.97 1.04-10° 5.59-106 9.16 - 10— 6 5.44 - 106
* 100 equally distributed | ppy 100 I 0.0029 6.88-10-15 3.48.10-15 877.10-15 7.19.10-15
trammg pomts | X-TFC 1 100 1 0.0019 1.11-1071*° 4.17-1071¢ 355.107'°> 1.36-1071°
- State-Time history (on test points)
* Hyperbolic tangent as . P
X i g Loss-Epochs History
activation function
- . i 107 7 I
« Adam Optimizer with
- 1071 1
learning rate 0.001 for L
ID—E-.
P I N N 0'80 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
] N 1073 5 t
o I n p utS an d b I aS 3 15 Control-Time history (on test points)
10-* '
sampled from U(-3;3)
10--
for PIELM and X-TFC
1079 - ;
107
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OCP TPBVP
O
1 tf r 8—AT (%
. e . T
minimize 5 / a.a. dt pYy
to fv:a—)\szr—i—Nv—)\v
subject to =7 1. OH -
. M= =y = M Solve via
v=Mr+ Nv+ a, > .y .
PMP Av= =50 ==X - N'A, PINN
r(to) = ro, 7(ty) = 7y ~
v(to) = wvo, v(ty) = vy r(to) = ro, 7(ty) = 7y
7 v(ty) = vo, v(tf) = vy
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method training/computational time [s] H(ts) mean(H) std(H) J
LQR [25] 0.1335 1.5379-10~°% 1.5379-10—° - 5.7731 - 102
GPOPS-II [25] 3.4343 1.5519-10% 1.5519-10—6 - 5.8325 - 102
PIELM 0.0047 1.5518-10=% 1.5518-10"°% 4.8415-10~!1 5.3806- 102
Hyperparameters | X-TFC 0.0031 1.5519 - 10~° 1.5519 - 10~° 2.3052 - 10—1‘1 5.8314 - 10—~ I

« 20 equally distributed

Control-Time history

0015 — Trajectories

training points —

80 neurons 00—y

* Hyperbolic tangent as
activation function o]

* Inputs and bias of ’\
sampled from U(-3;3)
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Conclusions and Outlooks

We presented a new algorithm based on PINNSs for solving
general OPCs.

* The class of OCPs with integral quadratic cost is
considered

« The PINN frameworks are used to solve the TPBVP
arising from the application of the PMP.

The algorithm was tested in designing energy optimal
rendezvous trajectories (and more).

e The CPU time, in order of milliseconds, makes the

proposed algorithm suitable for on board applications.

* The performances are comparable with the state-of-
the-art software such as GPOPS II.

Works are In progress to:

Employing the PINN-based algorithms to tackle a
wide variety of OPCs (especially OPCs for space
guidance, navigation, and control).

«  Consider path constraints of the states and inequality
constraints on the control
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Thanks for watching =)

. T rA‘]

Space Systems
Engineering Laboratory




