Class of Optimal Space Guidance Problems solved

 via Indirect Methods and Physics-Informed Neural Networks${ }^{1}$ Enrico Schiassi,
${ }^{2}$ Andrea D'Ambrosio, ${ }^{1}$ Andrea Scorsoglio, ${ }^{1}$ Roberto Furfaro, and ${ }^{2}$ Fabio Curti,

${ }^{1}$ University of Arizona, USA
${ }^{2}$ Sapienza University of Rome

Contents

- Introduction
- Overview and Motivations
- Goals
- Background
- Extreme Learning Machine (ELM) Algorithm
- Optimal Control Problems
- Physics-Informed Neural Networks (PINN)
- Problems and Results
- Hypersensitive Problem
- Energy Optimal Rendezvous
- Conclusions and Outlooks

Introduction: Overview and Motivations

- Optimal Control Problems (OCPs) represent are among the most interesting optimization problems, in many fields, especially in aerospace engineering.
- Energy Optimal problems such as Landing, Intercept, Rendezvous, etc.; are of extreme interest for space applications
- It is important to have robust algorithms, eventually suitable for real-time applications.

Introduction: Goals

- To employ Physics-Informed Neural Networks (PINN) to solve a class Optimal Control Problems (OCPs) via indirect method
- Generic and space applications
- We consider the class of OCPs with integral quadratic cost
- The focus of this talk is to show the effectiveness of PINN based algorithms in solving the class of OCPs considered
- Three different types of PINN frameworks are tested
- Standard PINN [Raissi et al.]
- Physics-Informed Extreme Learning Machine (PIELM) [Dwivedi and Srinivasan]
- Extreme Theory of Functional Connections (X-TFC) [Schiassi et al.]

ELM algorithm

- ELM is a training algorithm for shallow NN that randomly selects input weights and bias, and computes the output weights via least-square
- Input weights and bias are not tuned during the training
- The convergence of the ELM algorithm is proved by Huang et al. [2006]
- The convergence is guaranteed for any input weights and bias randomly chosen to any continuous
 probability distribution

Optimal Control Problems

- Optimal Control Problems (OCPs) are generally hard and computationally expensive.
- Closed-Loop solutions
- Open-Loop Solutions
- In general, Open-Loop solutions can be found in two ways
- Direct Method: Transform a continuous problem in a finite NLP problem and find the minimum
-

Indirect Method: Apply Pontryagin Minimum Principle (PMP) to derive the necessary conditions for optimality

- The solution of the OCP reduces to the solution of a Two Point Boundary Value Problem (TPBVP) that is a system of ODEs

Physics-Informed Neural Networks

Physics-Informed Neural Networks (PINN)

Standard PINN

Main Limitations

1. Gradient based methods used to minimize the loss

- Computationally expensive

2. Initial Conditions and/or Boundary Conditions are not analytically satisfied

- Increases the computational cost
- Can cause gradient pathologies (especially when DNN are used)

$$
f\left(\mathbf{x} ; \frac{\partial u}{\partial x_{1}}, \ldots, \frac{\partial u}{\partial x_{d}} ; \frac{\partial^{2} u}{\partial x_{1} \partial x_{1}}, \ldots, \frac{\partial^{2} u}{\partial x_{1} \partial x_{d}} ; \ldots ; \boldsymbol{\lambda}\right)=0, \quad \mathbf{x} \in \Omega . \quad \mathcal{B}(u, \mathbf{x})=0 \quad \text { on } \quad \partial \Omega
$$

Main Limitations

1. Gradient based methods used to minimize the loss

- Computationally expensive

2. Initial Conditions and/or Boundary Conditions are not analytically satisfied

- Increases the computational cost
- Can cause gradient pathologies (especially when DNN are used)

X-TFC

Main Limitations

1. Gradient based methods used to minimize the loss

- Computationally expensive

2. Initial Conditions and/or Boundary Conditions are not analytically satisfied

- Increases the computational cost
- Can cause gradient pathologies
(especially when DNN are used)

Summary of the PINN Frameworks

PINN-based approach to solving generic OCPs

TPBVP

Boundary Conditions (BCs) $\xi y_{j}\left(t_{0}\right)=y_{0_{j}}$ $y_{j}\left(t_{f}\right)=y_{f_{j}}$ $\xi \dot{y}_{j}\left(t_{0}\right)=\dot{y}_{j_{0}}$ $\dot{y}_{j}\left(t_{f}\right)=\dot{y}_{f_{j}}$
Pontryagin Maximum/ Minimum Principle

Solve via PINN

OCP

TPBVP

$\min \mathcal{J}=\frac{1}{2} \int_{0}^{1}\left(x^{2}+u^{2}\right) d t$
subject to

$$
\begin{aligned}
& \dot{x}=\frac{d x}{d t}=-x+u \\
& 0 \leq t \leq 1 \\
& x(0)=1.5 \\
& x(1)=1
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\dot{x}=\frac{\partial H}{\partial \lambda}=-x-\lambda \\
\dot{\lambda}=-\frac{\partial H}{\partial x}=\lambda-x
\end{array}\right. \\
& \left\{\begin{array}{l}
x(0)=1.5 \\
x(1)=1
\end{array}\right.
\end{aligned}
$$

Solve via PINN

Hypersensitive Problem (contd)

Hyperparameters

- 100 equally distributed training points
- Hyperbolic tangent as activation function
- Adam Optimizer with learning rate 0.001 for PINN
- Inputs and bias sampled from $U(-3 ; 3)$ for PIELM and X-TFC

method	layers	neurons	epochs	training time $[\mathrm{s}]$	$s_{\max }$	\bar{s}	$u_{\max }$	\bar{u}
PINN	1	100	1000	10.43	$7.63 \cdot 10^{-2}$	$2.94 \cdot 10^{-2}$	$2.64 \cdot 10^{-1}$	$1.35 \cdot 10^{-1}$
PINN	1	100	10000	93.09	$5.01 \cdot 10^{-4}$	$2.46 \cdot 10^{-4}$	$1.51 \cdot 10^{-3}$	$5.70 \cdot 10^{-4}$
PINN	1	100	100000	752.04	$1.18 \cdot 10^{-4}$	$5.43 \cdot 10^{-5}$	$1.92 \cdot 10^{-4}$	$7.07 \cdot 10^{-5}$
PINN	1	100	1000000	5968.13	$5.40 \cdot 10^{-5}$	$2.35 \cdot 10^{-5}$	$1.19 \cdot 10^{-4}$	$8.05 \cdot 10^{-5}$
PINN	1	100	10000000	59467.86	$1.54 \cdot 10^{-5}$	$5.21 \cdot 10^{-6}$	$3.87 \cdot 10^{-5}$	$1.32 \cdot 10^{-5}$
PINN	4	25	10000000	94878.03	$2.62 \cdot 10^{-6}$	$8.02 \cdot 10^{-7}$	$5.13 \cdot 10^{-6}$	$1.77 \cdot 10^{-6}$
PINN	10	10	10000000	149527.97	$1.04 \cdot 10^{-5}$	$5.59 \cdot 10^{-6}$	$9.16 \cdot 10^{-6}$	$5.44 \cdot 10^{-6}$
PIELM	1	100	1	0.0029	$6.88 \cdot 10^{-15}$	$3.48 \cdot 10^{-15}$	$8.77 \cdot 10^{-15}$	$7.19 \cdot 10^{-15}$
X-TFC	1	100	1	0.0019	$1.11 \cdot 10^{-15}$	$4.17 \cdot 10^{-16}$	$3.55 \cdot 10^{-15}$	$1.36 \cdot 10^{-15}$

Energy Optimal Rendezvous

OCP

$\begin{array}{ll} \underset{\boldsymbol{a}_{c}}{\operatorname{minimize}} & \frac{1}{2} \int_{t_{0}}^{t_{f}} \boldsymbol{a}_{c}^{\mathrm{T}} \boldsymbol{a}_{c} \mathrm{~d} t \\ \text { subject to } & \dot{\boldsymbol{r}}=\boldsymbol{v} \\ & \dot{\boldsymbol{v}}=\boldsymbol{M} \boldsymbol{r}+\boldsymbol{N} \boldsymbol{v}+\boldsymbol{a}_{c} \\ & \boldsymbol{r}\left(t_{0}\right)=\boldsymbol{r}_{0}, \boldsymbol{r}\left(t_{f}\right)=\boldsymbol{r}_{f} \\ & \boldsymbol{v}\left(t_{0}\right)=\boldsymbol{v}_{0}, \boldsymbol{v}\left(t_{f}\right)=\boldsymbol{v}_{f} \end{array}$	PMP	$\begin{aligned} & \left\{\begin{array}{l} \dot{r}=\frac{\partial \mathcal{H}}{\partial \boldsymbol{\lambda}_{r}}=\boldsymbol{v} \\ \dot{\boldsymbol{v}}=\frac{\partial \mathcal{H}}{\partial \boldsymbol{\lambda}_{v}}=\boldsymbol{M r} \boldsymbol{r}+\boldsymbol{N} \boldsymbol{v}-\boldsymbol{\lambda}_{v} \\ \dot{\boldsymbol{\lambda}}_{r}=-\frac{\partial \mathcal{H}}{\partial \boldsymbol{r}}=-\boldsymbol{M}^{\mathrm{T}} \boldsymbol{\lambda}_{v} \\ \dot{\boldsymbol{\lambda}}_{v}=-\frac{\partial \mathcal{H}}{\partial \boldsymbol{v}}=-\boldsymbol{\lambda}_{r}-\boldsymbol{N}^{\mathrm{T}} \boldsymbol{\lambda}_{v} \end{array}\right. \\ & \left\{\begin{array}{l} \boldsymbol{r}\left(t_{0}\right)=\boldsymbol{r}_{0}, \boldsymbol{r}\left(t_{f}\right)=\boldsymbol{r}_{f} \\ \boldsymbol{v}\left(t_{0}\right)=\boldsymbol{v}_{0}, \boldsymbol{v}\left(t_{f}\right)=\boldsymbol{v}_{f} \end{array}\right. \end{aligned}$

Solve via PINN

Energy Optimal Rendezvous (cont’d)

Hyperparameters

method	training/computational time $[\mathrm{s}]$	$\mathcal{H}\left(t_{f}\right)$	$\operatorname{mean}(\mathcal{H})$	$\operatorname{std}(\mathcal{H})$	\mathcal{J}
LQR [25]	0.1335	$1.5379 \cdot 10^{-6}$	$1.5379 \cdot 10^{-6}$	-	$5.7731 \cdot 10^{-2}$
GPOPS-II [25]	3.4343	$1.5519 \cdot 10^{-6}$	$1.5519 \cdot 10^{-6}$	-	$5.8325 \cdot 10^{-2}$
PIELM	0.0047	$1.5518 \cdot 10^{-6}$	$1.551 \mathbf{8} \cdot 10^{-6}$	$4.8415 \cdot 10^{-11}$	$5.3806 \cdot 10^{-2}$
X-TFC	0.0031	$1.5519 \cdot 10^{-6}$	$1.5519 \cdot 10^{-6}$	$2.3052 \cdot 10^{-11}$	$5.8314 \cdot 10^{-2}$

- 20 equally distributed training points
- 80 neurons
- Hyperbolic tangent as activation function
- Inputs and bias sampled from $U(-3 ; 3)$

Trajectories

Conclusions and Outlooks

- We presented a new algorithm based on PINNs for solving general OPCs.
- The class of OCPs with integral quadratic cost is considered
- The PINN frameworks are used to solve the TPBVP arising from the application of the PMP.
- The algorithm was tested in designing energy optimal rendezvous trajectories (and more).
- The CPU time, in order of milliseconds, makes the proposed algorithm suitable for on board applications.
- The performances are comparable with the state-of-the-art software such as GPOPS II.
- Works are in progress to:
- Employing the PINN-based algorithms to tackle a wide variety of OPCs (especially OPCs for space guidance, navigation, and control).

- Consider path constraints of the states and inequality constraints on the control

Thanks for watching =)

