

Class of Optimal Space Guidance Problems solved via Indirect Methods and Physics-Informed Neural Networks

¹Enrico Schiassi, ²Andrea D'Ambrosio, ¹Andrea Scorsoglio, ¹Roberto Furfaro, and ²Fabio Curti,

> ¹University of Arizona, USA ²Sapienza University of Rome

31st AAS/AIAA Space Flight Mechanics Meeting, Virtual, February 1-4, 2021

Contents

- Overview and Motivations
- Goals \bullet
- Background \bullet
 - Extreme Learning Machine (ELM) Algorithm
 - Optimal Control Problems
 - Physics-Informed Neural Networks (PINN)
- **Problems and Results** lacksquare
 - Hypersensitive Problem
 - Energy Optimal Rendezvous
- **Conclusions and Outlooks**

Introduction: Overview and Motivations

- Optimal Control Problems (OCPs) represent are among the most interesting optimization problems, in many fields, especially in aerospace engineering.
- Energy Optimal problems such as Landing, Intercept, Rendezvous, etc.; are of extreme interest for space applications
 - It is important to have robust algorithms, eventually suitable for real-time applications.

Introduction: Goals

- To employ *Physics-Informed Neural Networks (PINN)* to solve a class Optimal Control Problems (OCPs) via indirect method
 - Generic and space applications
- We consider the class of OCPs with integral quadratic cost • The focus of this talk is to show the effectiveness of PINN based algorithms in solving the class of OCPs considered
- Three different types of PINN frameworks are tested
 - Standard PINN [Raissi et al.]
 - Physics-Informed Extreme Learning Machine (PIELM) [Dwivedi and Srinivasan]
 - Extreme Theory of Functional Connections (X-TFC) [Schiassi et al.]

ELM algorithm

- ELM is a training algorithm for shallow NN that randomly selects input weights and bias, and computes the output weights via least-square
 - Input weights and bias are not tuned during the training
- The convergence of the ELM algorithm is proved by Huang et al. [2006]
 - The convergence is guaranteed for any input weights and bias randomly chosen to any continuous probability distribution

Optimal Control Problems

- Optimal Control Problems (OCPs) are generally hard and computationally expensive.
 - **Closed-Loop solutions**
 - **Open-Loop Solutions**
- In general, Open-Loop solutions can be found in two ways
 - **Direct Method**: Transform a continuous problem in a finite NLP problem and find the minimum
 - **Indirect Method**: Apply Pontryagin Minimum Principle (PMP) to derive the necessary conditions for optimality
 - The solution of the OCP reduces to the solution of a Two Point Boundary Value Problem (TPBVP) that is a system of ODEs

Physics-Informed Neural Networks

Standard PINN

Image taken from: Lu, L., Meng, X., Mao, Z. and Karniadakis, G.E., 2019. DeepXDE: A deep learning library for solving differential equations. *arXiv preprint arXiv:1907.04502*.

Space Systems Engineering Laboratory

Main Limitations

- Gradient based methods used to minimize the loss
 - Computationally expensive
- Initial Conditions and/or Boundary Conditions are not analytically satisfied
 - Increases the computational cost
 - Can cause gradient pathologies (especially when DNN are used)

Part of the image taken from: Lu, L., Meng, X., Mao, Z. and Karniadakis, G.E., 2019. DeepXDE: A deep learning library for solving differential equations. *arXiv preprint arXiv:1907.04502*.

Part of the image taken from: Lu, L., Meng, X., Mao, Z. and Karniadakis, G.E., 2019. DeepXDE: A deep learning library for solving differential equations. *arXiv preprint arXiv:1907.04502*.

Summary of the PINN Frameworks

PINN-based approach to solving generic OCPs

Space Systems Engineering Laboratory

Solve via PINN

Hypersensitive Problem

$$-x - \lambda$$

= $\lambda - x$
Solve via
PINN

Hypersensitive Problem (cont'd)

Hyperparameters

- 100 equally distributed training points
- Hyperbolic tangent as activation function
- Adam Optimizer with learning rate 0.001 for PINN
- Inputs and bias sampled from *U*(-3;3) for PIELM and X-TFC

method	layers	neurons	epochs	training time [s]	s_{max}	\overline{s}	u_{max}	\overline{u}
PINN	1	100	1000	10.43	$7.63 \cdot 10^{-2}$	$2.94 \cdot 10^{-2}$	$2.64 \cdot 10^{-1}$	$1.35 \cdot 10^{-1}$
PINN	1	100	10000	93.09	$5.01 \cdot 10^{-4}$	$2.46 \cdot 10^{-4}$	$1.51 \cdot 10^{-3}$	$5.70 \cdot 10^{-4}$
PINN	1	100	100000	752.04	$1.18 \cdot 10^{-4}$	$5.43 \cdot 10^{-5}$	$1.92 \cdot 10^{-4}$	$7.07\cdot 10^{-5}$
PINN	1	100	1000000	5968.13	$5.40 \cdot 10^{-5}$	$2.35 \cdot 10^{-5}$	$1.19\cdot 10^{-4}$	$8.05\cdot10^{-5}$
PINN	1	100	1000000	59467.86	$1.54 \cdot 10^{-5}$	$5.21 \cdot 10^{-6}$	$3.87 \cdot 10^{-5}$	$1.32 \cdot 10^{-5}$
PINN	4	25	1000000	94878.03	$2.62 \cdot 10^{-6}$	$8.02 \cdot 10^{-7}$	$5.13 \cdot 10^{-6}$	$1.77 \cdot 10^{-6}$
PINN	10	10	1000000	149527.97	$1.04 \cdot 10^{-5}$	$5.59 \cdot 10^{-6}$	$9.16 \cdot 10^{-6}$	$5.44 \cdot 10^{-6}$
PIELM	1	100	1	0.0029	$6.88 \cdot 10^{-15}$	$3.48 \cdot 10^{-15}$	$8.77 \cdot 10^{-15}$	$7.19 \cdot 10^{-15}$
X-TFC	1	100	1	0.0019	$1.11 \cdot 10^{-15}$	$4.17 \cdot 10^{-16}$	$3.55 \cdot 10^{-15}$	$1.36 \cdot 10^{-15}$

Energy Optimal Rendezvous

$$Nv - \lambda_v$$

 λ_v
 $-N^{T}\lambda_v$
 $= r_f$
 $b = v_f$
 $Nv - \lambda_v$
 $Solve via plinn$

Energy Optimal Rendezvous (cont'd)

Hyperparameters

- 20 equally distributed training points
- 80 neurons
- Hyperbolic tangent as activation function
- Inputs and bias sampled from *U*(-3;3)

method	training/computational time [s]	$\mathcal{H}(t_f)$	$mean(\mathcal{H})$	$std(\mathcal{H})$	\mathcal{J}
LQR [25]	0.1335	$1.5379 \cdot 10^{-6}$	$1.5379 \cdot 10^{-6}$	-	$5.7731 \cdot 10^{-2}$
GPOPS-II [25]	3.4343	$1.5519 \cdot 10^{-6}$	$1.5519 \cdot 10^{-6}$	-	$5.8325 \cdot 10^{-2}$
PIELM	0.0047	$1.5518 \cdot 10^{-6}$	$1.5518 \cdot 10^{-6}$	$4.8415 \cdot 10^{-11}$	$5.3806 \cdot 10^{-2}$
X-TFC	0.0031	$1.5519 \cdot 10^{-6}$	$1.5519 \cdot 10^{-6}$	$2.3052 \cdot 10^{-11}$	$5.8314 \cdot 10^{-2}$

Conclusions and Outlooks

- We presented a new algorithm based on PINNs for solving general OPCs.
 - The class of OCPs with integral quadratic cost is considered
 - The PINN frameworks are used to solve the TPBVP arising from the application of the PMP.
- The algorithm was tested in designing energy optimal rendezvous trajectories (and more).
 - The CPU time, in order of milliseconds, makes the proposed algorithm suitable for on board applications.
 - The performances are comparable with the state-ofthe-art software such as GPOPS II.
- Works are in progress to:
 - Employing the PINN-based algorithms to tackle a wide variety of OPCs (especially OPCs for space guidance, navigation, and control).
 - Consider path constraints of the states and inequality constraints on the control

Thanks for watching =)

Space Systems Engineering Laboratory

https://ssel.arizona.edu/