
Drag picture to placeholder or click icon to add
HEADER TEXT

F u e l - e f f i c i e n t P o w e r e d D e s c e n t G u i d a n c e
o n P l a n e t a r y B o d i e s v i a T h e o r y o f

F u n c t i o n a l C o n n e c t i o n s
1Enrico Schiassi, 1Roberto Furfaro, 2Hunter Johnston, and 2Daniele Mortari

1University of Arizona, USA
2Texas A&M University, USA

AAS/AIAA Astrodynamics Specialist Conference,
Aug 19-718 2019, Portland, Maine, USA

Drag picture to placeholder or click icon to addContents

• Introduction
§ Overview
§ Goals

• Background
§ Optimal Control for Space Guidance
§ TFC approach to solving a TPBVP

• Optimal Powered Descent Pinpoint Landing Problem
• Solution of the Motion Equations via TFC

§ Formulation
§ Results

• Conclusions and Outlooks

Drag picture to placeholder or click icon to addContents

• Introduction
§ Overview
§ Goals

• Background
§ Optimal Control for Space Guidance
§ TFC approach to solving a TPBVP

• Optimal Powered Descent Pinpoint Landing Problem
• Solution of the Motion Equations via TFC

§ Formulation
§ Results

• Conclusions and Outlooks

Drag picture to placeholder or click icon to addIntroduction: Overview

• Precision landing on planetary bodies is
a key technology for future human and
robotic exploration of the solar system

• To access planetary surfaces the landing
system technology will need to progress
to satisfy the demand for more
stringent requirements

• Extremely important for precision
landing is the ability to generate on-
board and track in real-time fuel
optimal trajectories

Drag picture to placeholder or click icon to addIntroduction: Goals

• To develop a new algorithm, suitable for on-board application,
based on the recently developed Theory of Functional Connections
(TFC) [Mortari 2018] to compute fuel-efficient trajectories

• The focus of this talk is to show the capability of TFC in solving the
equations of motion for the fuel-efficient powered descent
guidance fast and with high accuracy

Drag picture to placeholder or click icon to addContents

• Introduction
§ Overview
§ Goals

• Background
§ Optimal Control for Space Guidance
§ TFC approach to solving a TPBVP

• Optimal Powered Descent Pinpoint Landing Problem
• Solution of the Motion Equations via TFC

§ Formulation
§ Results

• Conclusions and Outlooks

Drag picture to placeholder or click icon to addOptimal Control for Space Guidance

• Optimal Control/Guidance is generally hard and computationally expensive
– No direct analytical solutions except in very limited cases

• Open-Loop solutions can be generally found in two ways
– Direct Method: Transform a continuous problem in a finite NLP problems and find the

minimum
§ Convergence to a global minimum generally non-guaranteed

– Indirect Method: Apply Pontryagin Minimum Principle (PMP) to derive the necessary
conditions at the final time
§ Solve a TPBVP (generally not well-posed)

• Recently, there have been a great interest in solving optimal guidance
problems in real-time
– Close the loop by a sequence of open-loop solutions
– Convexification approach: Solve a sequence of Convex Problems

§ Guarantee convergence to a global minimum in polynomial time

Drag picture to placeholder or click icon to addTFC approach to solving a TPBVP

• TFC derives expressions, called constrained expression, with an
embedded set of n linear constraints

• TFC has been successfully applied to solve linear [Mortari 2018],
and nonlinear [Mortari and Johnston 2018] differential equations
– Solutions computed via least-squares (iterative for the nonlinear case)
– Machine error accuracy in milliseconds

constrained optimization problem that can be solved via any of the available numerical algorithms that have
the potential to find a local minimum (e.g. thrust region method [1]). Whereas direct methods have been
applied to solve a large variety of optimal control problems, the general NLP problem is considered to be
NP-hard, i.e. non deterministic polynomial time hard. NP-hard problems imply that the required amount
of computational time needed to find the optimal solution does not have a predetermined bound (i.e. a
bound cannot be a priori determined). NP-hard problems are such that the computational time necessary
to converge to the solution is not known. As a consequence, the lack of assured convergence may result in
questioning the reliability of the proposed approach. Since for optimal closed loop space guidance, most
of the problems require computing numerical solutions on board and in real time, general algorithms that
solve NLP problems cannot be reliably implemented. More recently, researchers have been experimenting
with transforming optimal control problem from a general non convex formulation into a convex optimiza-
tion problem [2, 3]. Here, the goal is to take advantage of the assured convex convergence properties.
Indeed, convex optimization problems are shown to be computationally tractable as their related numerical
algorithms guarantee convergence to a global optimal solution in a polynomial time. The general convex
methodology requires that the optimal guidance problem is formulated as convex optimization whenever
appropriate or convexification techniques are applied to transform the problem from a non-convex into a
convex one. Such methodologies have been proposed and applied to solve optimal guidance and control via
direct method in a large variety of problems including, planetary landing [2, 3], entry atmospheric guidance
[4], and low thrust [5].

Alternatively, a second approach to solve optimal control and guidance problems has been generally applied
to a variety of optimal control problems. Named indirect method, the approach applies optimal control
theory (i.e. Pontryagin Minimum Principle) to formally derive the first-order necessary conditions that must
be satisfied by the optimal solution (state and control). The problem is cast as a Two Point Boundary Value
Problem (TPBVP) that must be solved to determine the time evolution of state and costate from which the
control generally depends. For general nonlinear problems the necessary conditions result in a complicate
set of equations and conditions. The resulting TPBVP tends to be highly sensitive to the initial guess on
the costates making the problem very hard to solve. Although indirect methods are known to yield more
accurate optimal solutions, they are very hard to implement and less used in practice (with respect to direct
methods).

Recently, a new approach [6] called Theory of Functional Connections (TFC)1 to derive expressions, called
constrained expression, with embedded constraints has been derived. This approach has been successfully
applied to solve both linear [7] and nonlinear [8] differential equations, and IVP and BVP, at machine error
accuracy and in milliseconds. The solution has been obtained by linear least-squares. TFC is a general
methodology that provide functional interpolation with an embedded set of n linear constraints. Such
expressions can be expressed in the following general form:

y(t) = g(t) +
nX

k=1

⌘k qk(t) = g(t) + ⌘Tq(t) (1)

1This theory, initially called “Theory of Connections” (ToC), has been renamed for two reasons. First, the “Theory of Con-
nections” already identifies a specific theory in differential geometry, and second, what this theory is actually doing is “Functional
Interpolation” as it provides all functions satisfying a set of constraints in term of function and any derivative in rectangular domains
of n-dimensional space.

2

Drag picture to placeholder or click icon to addTFC approach to solving a TPBVP

• Consider the following second-order boundary value problem:

Here, the qk(t) are n assigned linearly independent functions and the g(t) is a free function. The ⌘k are
coefficient functions that are derived by imposing the set of n constraints. The constraints considered in
the TFC are any linear combination of the functions and/or derivatives evaluated at specified values of the
variable t. The constraints of the differential equation to be solved enable to directly derive the unknown
coefficient functions, ⌘k. Once the vector of the unknown ⌘ is determined, the constraints for the differential
equations are satisfied for any possible g(t).

The constrained expressions thus obtained can be used to transform constrained optimization problem in un-
constrained. This implies to reduce the whole solution search space to just the space of admissible solutions,
those fully complying with all constraints. In optimization this has been done by expanding the free function
by a set of basis functions (e.g., Fourier series or orthogonal polynomials, such as Legendre or Chebyshev
polynomials) whose coefficients are found by direct application of a least-squares algorithms. Nonlinear
initial or boundary value problems require the implementation of an iterative least-squares approach to con-
verge to the desired solution [8].

In this paper, we propose a new method based on TFC that can compute fuel-efficient trajectories fast and
accurately. After deriving the TPBVP arising from the fuel-efficient powered descent guidance necessary
conditions, the TFC is employed to generate a set of boundary condition-free equations that can be solved by
expanding the solution in Chebyshev polynomials and computing the expansion coefficients using Iterative
Least Square (ILS) method. The proposed methodology is shown to be fast, accurate and thus potentially
suitable for on-board generation of optimal landing trajectories on planetary bodies.

TFC APPROACH TO SOLVING A TPBVP

A simple example of the TFC is shown here for the convenience of the reader, but the details can be found
in [6,8]. Let us consider solving a second-order boundary value problem such that,

F (t, y, ẏ, ÿ) = 0 subject to:

(
y(t0) = y0

y(tf) = yf

The constrained expression can be searched using Eq. (1) where h1(t) = 1 and h2(t) = t (see Ref. [6,8]
for details of this decision),

y(t) = g(t) + ⌘1 + ⌘2 t. (2)

By applying the constraints, we are left with a system of equation,
⇢
y0 � g0

yf � gf

�
=

1 t0

1 tf

�⇢
⌘1

⌘2

�
.

By inverting the matrix we can solve for the unknown ⌘ values which are,

⌘1 =
1

tf � t0

h
tf

⇣
y0 � g0)

⌘
� t0

⇣
yf � gf)

⌘i

⌘2 =
1

tf � t0

h⇣
yf � gf

⌘
�
⇣
y0 � g0)

⌘i
,

3

• According to the literature [Mortari 2018] we have the following constrained
expression:

Here, the qk(t) are n assigned linearly independent functions and the g(t) is a free function. The ⌘k are
coefficient functions that are derived by imposing the set of n constraints. The constraints considered in
the TFC are any linear combination of the functions and/or derivatives evaluated at specified values of the
variable t. The constraints of the differential equation to be solved enable to directly derive the unknown
coefficient functions, ⌘k. Once the vector of the unknown ⌘ is determined, the constraints for the differential
equations are satisfied for any possible g(t).

The constrained expressions thus obtained can be used to transform constrained optimization problem in un-
constrained. This implies to reduce the whole solution search space to just the space of admissible solutions,
those fully complying with all constraints. In optimization this has been done by expanding the free function
by a set of basis functions (e.g., Fourier series or orthogonal polynomials, such as Legendre or Chebyshev
polynomials) whose coefficients are found by direct application of a least-squares algorithms. Nonlinear
initial or boundary value problems require the implementation of an iterative least-squares approach to con-
verge to the desired solution [8].

In this paper, we propose a new method based on TFC that can compute fuel-efficient trajectories fast and
accurately. After deriving the TPBVP arising from the fuel-efficient powered descent guidance necessary
conditions, the TFC is employed to generate a set of boundary condition-free equations that can be solved by
expanding the solution in Chebyshev polynomials and computing the expansion coefficients using Iterative
Least Square (ILS) method. The proposed methodology is shown to be fast, accurate and thus potentially
suitable for on-board generation of optimal landing trajectories on planetary bodies.

TFC APPROACH TO SOLVING A TPBVP

A simple example of the TFC is shown here for the convenience of the reader, but the details can be found
in [6,8]. Let us consider solving a second-order boundary value problem such that,

F (t, y, ẏ, ÿ) = 0 subject to:

(
y(t0) = y0

y(tf) = yf

The constrained expression can be searched using Eq. (1) where h1(t) = 1 and h2(t) = t (see Ref. [6,8]
for details of this decision),

y(t) = g(t) + ⌘1 + ⌘2 t. (2)

By applying the constraints, we are left with a system of equation,
⇢
y0 � g0

yf � gf

�
=

1 t0

1 tf

�⇢
⌘1

⌘2

�
.

By inverting the matrix we can solve for the unknown ⌘ values which are,

⌘1 =
1

tf � t0

h
tf

⇣
y0 � g0)

⌘
� t0

⇣
yf � gf)

⌘i

⌘2 =
1

tf � t0

h⇣
yf � gf

⌘
�
⇣
y0 � g0)

⌘i
,

3

• By applying the constraints we get:

Here, the qk(t) are n assigned linearly independent functions and the g(t) is a free function. The ⌘k are
coefficient functions that are derived by imposing the set of n constraints. The constraints considered in
the TFC are any linear combination of the functions and/or derivatives evaluated at specified values of the
variable t. The constraints of the differential equation to be solved enable to directly derive the unknown
coefficient functions, ⌘k. Once the vector of the unknown ⌘ is determined, the constraints for the differential
equations are satisfied for any possible g(t).

The constrained expressions thus obtained can be used to transform constrained optimization problem in un-
constrained. This implies to reduce the whole solution search space to just the space of admissible solutions,
those fully complying with all constraints. In optimization this has been done by expanding the free function
by a set of basis functions (e.g., Fourier series or orthogonal polynomials, such as Legendre or Chebyshev
polynomials) whose coefficients are found by direct application of a least-squares algorithms. Nonlinear
initial or boundary value problems require the implementation of an iterative least-squares approach to con-
verge to the desired solution [8].

In this paper, we propose a new method based on TFC that can compute fuel-efficient trajectories fast and
accurately. After deriving the TPBVP arising from the fuel-efficient powered descent guidance necessary
conditions, the TFC is employed to generate a set of boundary condition-free equations that can be solved by
expanding the solution in Chebyshev polynomials and computing the expansion coefficients using Iterative
Least Square (ILS) method. The proposed methodology is shown to be fast, accurate and thus potentially
suitable for on-board generation of optimal landing trajectories on planetary bodies.

TFC APPROACH TO SOLVING A TPBVP

A simple example of the TFC is shown here for the convenience of the reader, but the details can be found
in [6,8]. Let us consider solving a second-order boundary value problem such that,

F (t, y, ẏ, ÿ) = 0 subject to:

(
y(t0) = y0

y(tf) = yf

The constrained expression can be searched using Eq. (1) where h1(t) = 1 and h2(t) = t (see Ref. [6,8]
for details of this decision),

y(t) = g(t) + ⌘1 + ⌘2 t. (2)

By applying the constraints, we are left with a system of equation,
⇢
y0 � g0

yf � gf

�
=

1 t0

1 tf

�⇢
⌘1

⌘2

�
.

By inverting the matrix we can solve for the unknown ⌘ values which are,

⌘1 =
1

tf � t0

h
tf

⇣
y0 � g0)

⌘
� t0

⇣
yf � gf)

⌘i

⌘2 =
1

tf � t0

h⇣
yf � gf

⌘
�

⇣
y0 � g0)

⌘i
,

3

(1)

Drag picture to placeholder or click icon to addTFC approach to solving a TPBVP

• Thus, the constrained expression and its derivatives become:

(2)

and can be plugged into Eq. (2) to arrive at the final constrained expression,

y(t) = g(t) +
tf � t

tf � t0
(y0 � g0) +

t� t0

tf � t0
(yf � gf), (3)

which represents all possible functions satisfying the boundary value constraints. Furthermore, the deriva-
tives follow, 8

>>>>>><

>>>>>>:

ẏ(t) = ġ(t)� 1

tf � t0
(y0 � g0) +

1

tf � t0
(yf � gf)

ÿ(t) = g̈(t)
...

y
(n)(t) = g

(n)(t)

The constrained expression defined by Eq. (3) and its derivatives can then be applied to a differential
equation which, in general, can be expressed as,

F (t, y, ẏ, ÿ) = 0 (4)

By substituting Eq. (3) into Eq. (4), the differential equation is transformed to an new differential equa-
tion we define as F̃ , which is only a function of the independent variable t and the free-function g(t)
where,

F̃ (t, g, ġ, g̈) = 0.

This differential equation is unique because it is subject to no constraints and will always satisfy the
boundary-values. In order to solve this problem numerically, we define the function g(t) as some know
basis with unknown coefficients such that,

g(t) = ⇠Th(x(t)) (5)

where ⇠ is a m⇥1 vector of unknown coefficients where m is the number of basis functions. In general, the
basis functions are defined on an inconsistent domain (Chebyshev and Legendre polynomials are defined on
x 2 [�1,+1], Fourier series is defined on x 2 [�⇡,+⇡], etc.) so these functions must be linearly mapped
to the independent variable t. This can be done using the equations,

x = x0 +
xf � x0

tf � t0
(t� t0) $ t = t0 +

tf � t0

xf � x0
(x� x0).

The subsequent derivatives the the free-function defined in Eq. (5) follow,

dngi
dtn

= ⇠T dnh(x)
dxn

✓
dx
dt

◆n

,

where by defining,

c :=
dx
dt

=
xf � x0

tf � t0

the expression can be simplified to,
dngi
dtn

= c
n⇠T dnh(x)

dxn
,

4

and can be plugged into Eq. (2) to arrive at the final constrained expression,

y(t) = g(t) +
tf � t

tf � t0
(y0 � g0) +

t� t0

tf � t0
(yf � gf), (3)

which represents all possible functions satisfying the boundary value constraints. Furthermore, the deriva-
tives follow, 8

>>>>>><

>>>>>>:

ẏ(t) = ġ(t)� 1

tf � t0
(y0 � g0) +

1

tf � t0
(yf � gf)

ÿ(t) = g̈(t)
...

y
(n)(t) = g

(n)(t)

The constrained expression defined by Eq. (3) and its derivatives can then be applied to a differential
equation which, in general, can be expressed as,

F (t, y, ẏ, ÿ) = 0 (4)

By substituting Eq. (3) into Eq. (4), the differential equation is transformed to an new differential equa-
tion we define as F̃ , which is only a function of the independent variable t and the free-function g(t)
where,

F̃ (t, g, ġ, g̈) = 0.

This differential equation is unique because it is subject to no constraints and will always satisfy the
boundary-values. In order to solve this problem numerically, we define the function g(t) as some know
basis with unknown coefficients such that,

g(t) = ⇠Th(x(t)) (5)

where ⇠ is a m⇥1 vector of unknown coefficients where m is the number of basis functions. In general, the
basis functions are defined on an inconsistent domain (Chebyshev and Legendre polynomials are defined on
x 2 [�1,+1], Fourier series is defined on x 2 [�⇡,+⇡], etc.) so these functions must be linearly mapped
to the independent variable t. This can be done using the equations,

x = x0 +
xf � x0

tf � t0
(t� t0) $ t = t0 +

tf � t0

xf � x0
(x� x0).

The subsequent derivatives the the free-function defined in Eq. (5) follow,

dngi
dtn

= ⇠T dnh(x)
dxn

✓
dx
dt

◆n

,

where by defining,

c :=
dx
dt

=
xf � x0

tf � t0

the expression can be simplified to,
dngi
dtn

= c
n⇠T dnh(x)

dxn
,

4

and can be plugged into Eq. (2) to arrive at the final constrained expression,

y(t) = g(t) +
tf � t

tf � t0
(y0 � g0) +

t� t0

tf � t0
(yf � gf), (3)

which represents all possible functions satisfying the boundary value constraints. Furthermore, the deriva-
tives follow, 8

>>>>>><

>>>>>>:

ẏ(t) = ġ(t)� 1

tf � t0
(y0 � g0) +

1

tf � t0
(yf � gf)

ÿ(t) = g̈(t)
...

y
(n)(t) = g

(n)(t)

The constrained expression defined by Eq. (3) and its derivatives can then be applied to a differential
equation which, in general, can be expressed as,

F (t, y, ẏ, ÿ) = 0 (4)

By substituting Eq. (3) into Eq. (4), the differential equation is transformed to an new differential equa-
tion we define as F̃ , which is only a function of the independent variable t and the free-function g(t)
where,

F̃ (t, g, ġ, g̈) = 0.

This differential equation is unique because it is subject to no constraints and will always satisfy the
boundary-values. In order to solve this problem numerically, we define the function g(t) as some know
basis with unknown coefficients such that,

g(t) = ⇠Th(x(t)) (5)

where ⇠ is a m⇥1 vector of unknown coefficients where m is the number of basis functions. In general, the
basis functions are defined on an inconsistent domain (Chebyshev and Legendre polynomials are defined on
x 2 [�1,+1], Fourier series is defined on x 2 [�⇡,+⇡], etc.) so these functions must be linearly mapped
to the independent variable t. This can be done using the equations,

x = x0 +
xf � x0

tf � t0
(t� t0) $ t = t0 +

tf � t0

xf � x0
(x� x0).

The subsequent derivatives the the free-function defined in Eq. (5) follow,

dngi
dtn

= ⇠T dnh(x)
dxn

✓
dx
dt

◆n

,

where by defining,

c :=
dx
dt

=
xf � x0

tf � t0

the expression can be simplified to,
dngi
dtn

= c
n⇠T dnh(x)

dxn
,

4

• By plugging into equation (1) we get:

and can be plugged into Eq. (2) to arrive at the final constrained expression,

y(t) = g(t) +
tf � t

tf � t0
(y0 � g0) +

t� t0

tf � t0
(yf � gf), (3)

which represents all possible functions satisfying the boundary value constraints. Furthermore, the deriva-
tives follow, 8

>>>>>><

>>>>>>:

ẏ(t) = ġ(t)� 1

tf � t0
(y0 � g0) +

1

tf � t0
(yf � gf)

ÿ(t) = g̈(t)
...

y
(n)(t) = g

(n)(t)

The constrained expression defined by Eq. (3) and its derivatives can then be applied to a differential
equation which, in general, can be expressed as,

F (t, y, ẏ, ÿ) = 0 (4)

By substituting Eq. (3) into Eq. (4), the differential equation is transformed to an new differential equa-
tion we define as F̃ , which is only a function of the independent variable t and the free-function g(t)
where,

F̃ (t, g, ġ, g̈) = 0.

This differential equation is unique because it is subject to no constraints and will always satisfy the
boundary-values. In order to solve this problem numerically, we define the function g(t) as some know
basis with unknown coefficients such that,

g(t) = ⇠Th(x(t)) (5)

where ⇠ is a m⇥1 vector of unknown coefficients where m is the number of basis functions. In general, the
basis functions are defined on an inconsistent domain (Chebyshev and Legendre polynomials are defined on
x 2 [�1,+1], Fourier series is defined on x 2 [�⇡,+⇡], etc.) so these functions must be linearly mapped
to the independent variable t. This can be done using the equations,

x = x0 +
xf � x0

tf � t0
(t� t0) $ t = t0 +

tf � t0

xf � x0
(x� x0).

The subsequent derivatives the the free-function defined in Eq. (5) follow,

dngi
dtn

= ⇠T dnh(x)
dxn

✓
dx
dt

◆n

,

where by defining,

c :=
dx
dt

=
xf � x0

tf � t0

the expression can be simplified to,
dngi
dtn

= c
n⇠T dnh(x)

dxn
,

4

• By discretizing the differential equation domain and defining the free function g(t) as
some known basis function (Chebyshev polynomials for this work) with unknown
coefficients, 𝑔 𝑡 = 𝜉%ℎ 𝑥 𝑡 , equation (2) reduces to:

which defines all mappings of the free-function. Lastly, the domain t 2 [t0, tf] must be discretized by
N points. In this paper, and prior papers we consider the linear basis h(x) as Chebysehv or Legendre
polynomials. The optimal distribution of points is provided by collocation points [9, 10], defined as,

xk = � cos

✓
k⇡

N

◆
for k = 1, 2, ..N. (6)

As compared to the uniform distribution point, the collocation point distribution allows a much slower
increase of the condition number as the number of basis functions, m, increases. By defining the free
function in this way and then discretizing the domain of the differential equations, F̃ become

F̃ (⇠) = 0,

which is a function (linear or nonlinear) of the unknown parameters ⇠ of which many optimization schemes
can be applied. For this paper, an iterative least-squares technique is used.

OPTIMAL POWERED DESCENT PINPOINT LANDING PROBLEM

In the powered descent pinpoint landing guidance on large bodies (e.g. the Moon or Mars) the system
dynamics during the power descent is modeled as follows:

ṙ = v

v̇ = ag +
T

m

ṁ = �↵T

(7)

where ↵ = 1
vex

, vex is the effective exhaust velocity of the rocket engine that is considered constant [11],
T = ||T ||

1
2 , and T = T t̂ is the thrust and it is defined as follow:

0 Tmin T Tmax

||t̂|| = 1

ag is the gravity acceleration and it is assumed to be constant. We have two boundary conditions to meet 1)
r(0) = r0,v(0) = v0,m(0) = m0 at t0 = 0, and 2) r(tf) = rf ,v(tf) = vf at tf .

The goal is to minimize the mass of propellant:

minimize
T,tf

↵

Z tf

0
T d⌧

subject to fi(t) bi, i = 1, . . . ,m.

5

(3)

• (3) is a loss function that is solved for 𝜉 via different optimization schemes
– Iterative least-square (ILS) for nonlinear differential equations

Drag picture to placeholder or click icon to addContents

• Introduction
§ Overview
§ Goals

• Background
§ Optimal Control for Space Guidance
§ TFC approach to solving a TPBVP

• Optimal Powered Descent Pinpoint Landing Problem
• Solution of the Motion Equations via TFC

§ Formulation
§ Results

• Conclusions and Outlooks

Drag picture to placeholder or click icon to addOptimal Powered Descent Pinpoint Landing

• The system dynamics during the power descent on large bodies is given by:

which defines all mappings of the free-function. Lastly, the domain t 2 [t0, tf] must be discretized by
N points. In this paper, and prior papers we consider the linear basis h(x) as Chebysehv or Legendre
polynomials. The optimal distribution of points is provided by collocation points [9, 10], defined as,

xk = � cos

✓
k⇡

N

◆
for k = 1, 2, ..N. (6)

As compared to the uniform distribution point, the collocation point distribution allows a much slower
increase of the condition number as the number of basis functions, m, increases. By defining the free
function in this way and then discretizing the domain of the differential equations, F̃ become

F̃ (⇠) = 0,

which is a function (linear or nonlinear) of the unknown parameters ⇠ of which many optimization schemes
can be applied. For this paper, an iterative least-squares technique is used.

OPTIMAL POWERED DESCENT PINPOINT LANDING PROBLEM

In the powered descent pinpoint landing guidance on large bodies (e.g. the Moon or Mars) the system
dynamics during the power descent is modeled as follows:

ṙ = v

v̇ = ag +
T

m

ṁ = �↵T

(7)

where ↵ = 1
vex

, vex is the effective exhaust velocity of the rocket engine that is considered constant [11],
T = ||T ||

1
2 , and T = T t̂ is the thrust and it is defined as follow:

0 Tmin T Tmax

||t̂|| = 1

ag is the gravity acceleration and it is assumed to be constant. We have two boundary conditions to meet 1)
r(0) = r0,v(0) = v0,m(0) = m0 at t0 = 0, and 2) r(tf) = rf ,v(tf) = vf at tf .

The goal is to minimize the mass of propellant:

minimize
T,tf

↵

Z tf

0
T d⌧

subject to fi(t) bi, i = 1, . . . ,m.

5

subject to

is determined by expanding the function in an appropriate set of orthogonal polynomials (e.g., Chebyshev
polynomials) whose coefficients are found by direct application of a least-squares algorithms. Nonlinear
initial or boundary value problems require the implementation of an iterative least-squares approach to
converge to the desired solution.8

In this paper, we propose a new method based on ToC that can compute fuel-efficient trajectories fast and
accurately. After deriving the TPBVP arising from the fuel-efficient powered descent guidance necessary
conditions, the ToC is employed to generate a set of boundary condition-free equations that can be solved by
expanding the solution in chebyshev polynomials and computing the expansion coefficients using Iterative
Least Square (ILS) method. The proposed methodology is shown to be fast, accurate and thus potentially
suitable for on-board generation of optimal landing trajectories on planetary bodies.

PROBLEM FORMULATION

We consider the problem of powered descent guidance on a large body (e.g. Mars) and model the system
dynamics during the power descent as follows:

ṙ = v

v̇ = g +
T

m

ṁ = �↵T

(2)

where T = (||T ||)
1
2 .

T = T t̂ is the thrust and it is defined as follow:

0 Tmin T Tmax

||t̂|| = 1

g is the gravity acceleration and it is assumed to be constant. We have two boundary conditions (BCs) at the
initial t0 = 0 and final tf time.

At t0 = 0:
r(0) = r0

v(0) = v0

m(0) = m0

At tf :

r(tf) = rf

v(tf) = vf

The goal is to minimize the mass of propellant:

3

is determined by expanding the function in an appropriate set of orthogonal polynomials (e.g., Chebyshev
polynomials) whose coefficients are found by direct application of a least-squares algorithms. Nonlinear
initial or boundary value problems require the implementation of an iterative least-squares approach to
converge to the desired solution.8

In this paper, we propose a new method based on ToC that can compute fuel-efficient trajectories fast and
accurately. After deriving the TPBVP arising from the fuel-efficient powered descent guidance necessary
conditions, the ToC is employed to generate a set of boundary condition-free equations that can be solved by
expanding the solution in chebyshev polynomials and computing the expansion coefficients using Iterative
Least Square (ILS) method. The proposed methodology is shown to be fast, accurate and thus potentially
suitable for on-board generation of optimal landing trajectories on planetary bodies.

PROBLEM FORMULATION

We consider the problem of powered descent guidance on a large body (e.g. Mars) and model the system
dynamics during the power descent as follows:

ṙ = v

v̇ = g +
T

m

ṁ = �↵T

(2)

where T = (||T ||)
1
2 .

T = T t̂ is the thrust and it is defined as follow:

0 Tmin T Tmax

||t̂|| = 1

g is the gravity acceleration and it is assumed to be constant. We have two boundary conditions (BCs) at the
initial t0 = 0 and final tf time.

At t0 = 0:
r(0) = r0

v(0) = v0

m(0) = m0

At tf :

r(tf) = rf

v(tf) = vf

The goal is to minimize the mass of propellant:

3

which defines all mappings of the free-function. Lastly, the domain t 2 [t0, tf] must be discretized by
N points. In this paper, and prior papers we consider the linear basis h(x) as Chebysehv or Legendre
polynomials. The optimal distribution of points is provided by collocation points [9, 10], defined as,

xk = � cos

✓
k⇡

N

◆
for k = 1, 2, ..N. (6)

As compared to the uniform distribution point, the collocation point distribution allows a much slower
increase of the condition number as the number of basis functions, m, increases. By defining the free
function in this way and then discretizing the domain of the differential equations, F̃ become

F̃ (⇠) = 0,

which is a function (linear or nonlinear) of the unknown parameters ⇠ of which many optimization schemes
can be applied. For this paper, an iterative least-squares technique is used.

OPTIMAL POWERED DESCENT PINPOINT LANDING PROBLEM

In the powered descent pinpoint landing guidance on large bodies (e.g. the Moon or Mars) the system
dynamics during the power descent is modeled as follows:

ṙ = v

v̇ = ag +
T

m

ṁ = �↵T

(7)

where ↵ = 1
vex

, vex is the effective exhaust velocity of the rocket engine that is considered constant [11],
T = ||T ||

1
2 , and T = T t̂ is the thrust and it is defined as follow:

0 Tmin T Tmax

||t̂|| = 1

ag is the gravity acceleration and it is assumed to be constant. We have two boundary conditions to meet 1)
r(0) = r0,v(0) = v0,m(0) = m0 at t0 = 0, and 2) r(tf) = rf ,v(tf) = vf at tf .

The goal is to minimize the mass of propellant:

minimize
T,tf

↵

Z tf

0
T d⌧

subject to fi(t) bi, i = 1, . . . ,m.

5

BCs Thrust

which defines all mappings of the free-function. Lastly, the domain t 2 [t0, tf] must be discretized by
N points. In this paper, and prior papers we consider the linear basis h(x) as Chebysehv or Legendre
polynomials. The optimal distribution of points is provided by collocation points [9, 10], defined as,

xk = � cos

✓
k⇡

N

◆
for k = 1, 2, ..N. (6)

As compared to the uniform distribution point, the collocation point distribution allows a much slower
increase of the condition number as the number of basis functions, m, increases. By defining the free
function in this way and then discretizing the domain of the differential equations, F̃ become

F̃ (⇠) = 0,

which is a function (linear or nonlinear) of the unknown parameters ⇠ of which many optimization schemes
can be applied. For this paper, an iterative least-squares technique is used.

OPTIMAL POWERED DESCENT PINPOINT LANDING PROBLEM

In the powered descent pinpoint landing guidance on large bodies (e.g. the Moon or Mars) the system
dynamics during the power descent is modeled as follows:

ṙ = v

v̇ = ag +
T

m

ṁ = �↵T

(7)

where ↵ = 1
vex

, vex is the effective exhaust velocity of the rocket engine that is considered constant [11],
T = ||T ||

1
2 , and T = T t̂ is the thrust and it is defined as follow:

0 Tmin T Tmax

||t̂|| = 1

ag is the gravity acceleration and it is assumed to be constant. We have two boundary conditions to meet 1)
r(0) = r0,v(0) = v0,m(0) = m0 at t0 = 0, and 2) r(tf) = rf ,v(tf) = vf at tf .

The goal is to minimize the mass of propellant:

minimize
T,tf

↵

Z tf

0
T d⌧

subject to fi(t) bi, i = 1, . . . ,m.

5

• The goal is to minimize the mass of propellant:

minimize
T,tf

↵

Z tf

0
T d⌧

Pontryagyn Minimum Principle: Hamiltonian

States and co-states are function of time (we give it for granted for the sake of simplicity in the nota-
tion).

H = ↵T + �
T
rv + �

T
v

✓
g +

T

m
t̂

◆
� �m↵T (3)

Optimality

The Lagrangian is:

L = H + µ
T
h(T) (4)

where :

µ =

"
µ1

µ2

#
� 0

and

h(T) =

"
h1

h2

#
=

"
T � Tmax

Tmin � T

#
 0

By plugging into L we get:

L = ↵T + �r
T
v + �v

T

✓
g +

T

m
t̂

◆
� �m↵T + µ1(T � Tmax) + µ2(Tmin � T)

By taking @L
@t̂

and setting it equal to zero we get that the thrust direction is :

t̂ = � �v

||�v||
(5)

Thus L becomes:

4

where 𝛂 is the reciprocal of the effective exhaust velocity of
the rocket engine

Differential Equations Constraints

Drag picture to placeholder or click icon to addOptimal Powered Descent Pinpoint Landing

• The necessary conditions for the optimal control problem calls for the Hamiltonian

• From the optimal control theory is proved that:
– The thrust direction is:
– The thrust profile is bang-bang

Pontryagyn Minimum Principle: Hamiltonian, Co-state Equations, and Optimal Thrust

According to the Pontryagyn minimum principle theory the necessary conditions for the optimal control
problem requests the Hamiltonian H [11] (states and co-states are function of time and we give it for granted
for the sake of simplicity in the notation):

H = ↵T + �T
rv + �T

v

✓
ag +

T

m
t̂

◆
� �m↵T (8)

from which the co-state equations follow:

�̇r = �@H

@r
= 0 (9)

�̇v = �@H

@v
= ��r (10)

�̇m = �@H

@m
= � T

m2
||�v|| (11)

From the optimal control theory [11] it is proved that the thrust direction is:

t̂ = � �v

||�v||
(12)

and that the thrust magntitude can switch between min-max only twice at the most, that is, the thrust
magnitude has a bang-bang profile max-min-max. Therefore, we can write the thrust magnitude as func-
tion of time with t1 and t2 as parameters, where t1 and t2 are the times where the switches happen; i.e.
T = T (t; t1, t2).

TPBVP definition

Finally, considering the co-state equations derived in the previous subsection, our whole TPBVP becomes:

ṙ = v

v̇ = ag �
T (t; t1, t2)

m(t)

�v

||�v||
ṁ = �↵T (t; t1, t2)

�̇r = 0

�̇v = ��r

�̇m = �T (t; t1, t2)

m2
||�v||

6

Pontryagyn Minimum Principle: Hamiltonian, Co-state Equations, and Optimal Thrust

According to the Pontryagyn minimum principle theory the necessary conditions for the optimal control
problem requests the Hamiltonian H [11] (states and co-states are function of time and we give it for granted
for the sake of simplicity in the notation):

H = ↵T + �T
rv + �T

v

✓
ag +

T

m
t̂

◆
� �m↵T (8)

from which the co-state equations follow:

�̇r = �@H

@r
= 0 (9)

�̇v = �@H

@v
= ��r (10)

�̇m = �@H

@m
= � T

m2
||�v|| (11)

From the optimal control theory [11] it is proved that the thrust direction is:

t̂ = � �v

||�v||
(12)

and that the thrust magntitude can switch between min-max only twice at the most, that is, the thrust
magnitude has a bang-bang profile max-min-max. Therefore, we can write the thrust magnitude as func-
tion of time with t1 and t2 as parameters, where t1 and t2 are the times where the switches happen; i.e.
T = T (t; t1, t2).

TPBVP definition

Finally, considering the co-state equations derived in the previous subsection, our whole TPBVP becomes:

ṙ = v

v̇ = ag �
T (t; t1, t2)

m(t)

�v

||�v||
ṁ = �↵T (t; t1, t2)

�̇r = 0

�̇v = ��r

�̇m = �T (t; t1, t2)

m2
||�v||

6

• From the Hamiltonian we derive the co-state equations

Pontryagyn Minimum Principle: Hamiltonian, Co-state Equations, and Optimal Thrust

According to the Pontryagyn minimum principle theory the necessary conditions for the optimal control
problem requests the Hamiltonian H [11] (states and co-states are function of time and we give it for granted
for the sake of simplicity in the notation):

H = ↵T + �T
rv + �T

v

✓
ag +

T

m
t̂

◆
� �m↵T (8)

from which the co-state equations follow:

�̇r = �@H

@r
= 0 (9)

�̇v = �@H

@v
= ��r (10)

�̇m = �@H

@m
= � T

m2
||�v|| (11)

From the optimal control theory [11] it is proved that the thrust direction is:

t̂ = � �v

||�v||
(12)

and that the thrust magntitude can switch between min-max only twice at the most, that is, the thrust
magnitude has a bang-bang profile max-min-max. Therefore, we can write the thrust magnitude as func-
tion of time with t1 and t2 as parameters, where t1 and t2 are the times where the switches happen; i.e.
T = T (t; t1, t2).

TPBVP definition

Finally, considering the co-state equations derived in the previous subsection, our whole TPBVP becomes:

ṙ = v

v̇ = ag �
T (t; t1, t2)

m(t)

�v

||�v||
ṁ = �↵T (t; t1, t2)

�̇r = 0

�̇v = ��r

�̇m = �T (t; t1, t2)

m2
||�v||

6

C. Numerical Implementation
The seven nonlinear algebraic equations obtained in Sec. IV.B

form amultivariable root-finding problemwhere the unknownvector
z is to be found to satisfy a system of seven equations:

f!z" # 0 (50)

Although a number of possible numerical methods exist for
solving the system in Eq. (50), such as theNewton–Raphsonmethod,
our finding is that the dogleg trust-region method by Powell [28] is
much more robust in offering reliable convergence for our problems.
Note that the vector function f in Eq. (50) has closed-form
expression, and the Jacobian ∂f∕∂z can also be analytically
evaluated. Although this is not a problemwhere a guarantee exists for
finding the zero of the nonlinear system, it is an ongoing effort of ours
to develop techniques to further enhance the solution process to the
point where convergence is practically assured (i.e., convergence in
all but the most difficult points along a trajectory). In an event when
convergence is not achieved, the guidance solution can still be
obtained by propagating the costate from Eq. (36) using the
previously converged λ0.
An initial guess z0 is required by the root-finding method in the

very first solution of the problem. For the powered descent problem,
the following choice of the initial costate for a “cold start” is
suggested:

p!0"
V0

−
V0

kV0k
; p!0"

r0 # 0 (51)

The rationale for the choice of p!0"
V0

rests with the conclusion that
the direction of pV is the direction of the optimal thrust vector [cf.
Eq. (35)]. For powered descent, the thrust is likely to be nearly along
the opposite direction of the velocity vector, i.e., pV ≈ − c!t"V with a
coefficient c!t" > 0. The selection of c!t0" # 1∕kV0k in Eq. (51)
simply provides a desirable scaling of p!0"

V0
. The choice of p!0"

r0 is
somewhat arbitrary. But becausep 0

V # − pr byEq. (34), the choice of
p!0"
r0 # 0 implies a reasonable expectation that pV does not change

rapidly from p!0"
V0
, at least initially.

The time of flight tf may be desired to be bounded by an upper and
lower bound. In our implementation for any unknown u that is
bounded by given bounds u min ≤ u ≤ u max , a transformation is used:

u # u max $ u min

2
$ u max − u min

2
sin η (52)

and the algorithm works to find the unconstrained variable η instead.

D. Onboard Computational Viability

The computation required to solve the root-finding problem in the
preceding subsection is well within the capability of modern flight
computers. As a comparison, UPG runs at least an order ofmagnitude
faster than the fully numerical predictor–corrector entry guidance
(FNPEG) algorithm reported in [29,30]. Benchmark evaluations of
the computation requirements of FNPEG concluded that the
computation was comparable to the current primary entry guidance
algorithm for the Orion spacecraft [30]. In a different application,
FNPEG was successfully implemented in flight software in a flight
processor and demonstrated in real-time executions [31]. The fact
that UPG is considerably faster still than FNPEG provides
confidence in the onboard computational viability of the algorithm.

V. Optimal Thrust Profile and Burn Times
A. Structure of Fuel-Optimal Thrust Magnitude Profile

In a one-dimensional fuel-optimal descent problem, it is known
that the optimal thrust magnitude is piecewise constant, either at the
upper or lower bound, and the thrust has at most one switch between
the two bounds [32,33]. For a class of two-dimensional (2-D) optimal
rocket flight problems that include the 2-D fuel-optimal powered
descent problem in a constant gravity field, the thrust magnitude is

also bang–bang type but can have up to two switches [34]. The
questions to which we seek answers are as follows.
1) For the three-dimensional fuel-optimal problems as posed in

Sec. II, is the optimal thrust magnitude profile still bang–bang?
2) What is the maximum possible number of switches in the thrust

magnitude profile, if the answer to 1 is positive?
The answers will help greatly simplify the design of the fuel-

optimal guidance algorithm. The answers are summarized in the
following proposition.
Proposition: In a constant gravity field, the three-dimensional

optimal powered descent problems formulated in Sec. II have a
piecewise constant thrust magnitude profile, either at Tmax or Tmin .
No other intermediate value (constant or time-varying) over a finite
time period is optimal. Moreover, there are at most two switches in
the optimal thrust magnitude between the upper and lower bounds of
the thrust; thus, the problems have at most three subarcs of constant
thrust magnitudes (at the upper or lower bound).
Proof: The details of the proof are provided in the Appendix.
Based on the conclusion in the proposition, in UPG the default

thrust magnitude structure is as shown in Fig. 1. The switch times t1
and t2 and the final time tf are all to be found as part of the optimal
solution. Note that by allowing the possibilities of t1 # 0, t2 # t1,
and tf # t2, this thrust structure may lead to special-case sequences
of Tmin − Tmax , Tmax , Tmin , and Tmax − Tmin . The only possibility
among all three-arc thrust structures not included in a variation of the
profile in Fig. 1 is the sequence of Tmin − Tmax − Tmin . However, by
examining the curvature of the switching function, Rea [35] shows
that the Tmax − Tmin − Tmin thrust structure can be excluded from the
optimal solution. A physical argument to support this conclusion can
also be easily made for a sufficiently small Tmin . For example, if
Tmin # 0, the powered descent trajectory cannot possibly end with
T # Tmin (free fall) because the final velocity constraints will not be
met with a zero (or small) thrust acceleration. Indeed, existing
numerical results on fuel-optimal powered descent trajectories in the
literature [10,12,13,16–18] all confirm this conclusion. Therefore,
the generic three-arc thrust structure in Fig. 1 captures all the possible
cases in fuel-optimal powered descent.

B. Optimal Burn Times

The determination of the optimal switching times t1 and t2 in Fig. 1
in principle may be found by computing the switching function (see
Appendix). But this is an unreliable way because slightly less perfect
initial guesses could dramatically alter the resulting thrust magnitude
profile, making convergence difficult to achieve. The outer-loop
minimization method described later is much more robust and
efficient.
For specified switching times t1 and t2, the basic algorithm

outlined in Sec. IV will find the corresponding optimal solution
including the optimal values for tf and the performance index. For
now, let us assume that t1 is fixed. Therefore, the optimal
performance index is a univariate function of t2; for a given value of
t2, the optimal performance index has a corresponding value. Denote
the optimal performance index by J%!t2" corresponding to the given
t2 to signify its dependence on t2. Evaluating J%!t2" is fast because
the basic algorithm finds the solution very rapidly. An outer loop is
built around the basic algorithm to update the value of t2 and further
reduce the value of J%!t2" over t2. This outer loop is exited once

Fig. 1 Default thrust magnitude profile.

6 Article in Advance / LU

Do
wn

loa
de

d b
y U

NI
V.

 O
F

AR
IZ

ON
A

on
 Ja

nu
ary

 21
, 2

01
8 |

 ht
tp:

//a
rc.

aia
a.o

rg
 | D

OI
: 1

0.2
51

4/1
.G

00
32

43

Thrust profile [Ping Lu 2017]

Drag picture to placeholder or click icon to addOptimal Powered Descent Pinpoint Landing

• The whole TPBVP becomes:

Pontryagyn Minimum Principle: Hamiltonian, Co-state Equations, and Optimal Thrust

According to the Pontryagyn minimum principle theory the necessary conditions for the optimal control
problem requests the Hamiltonian H [11] (states and co-states are function of time and we give it for granted
for the sake of simplicity in the notation):

H = ↵T + �T
rv + �T

v

✓
ag +

T

m
t̂

◆
� �m↵T (8)

from which the co-state equations follow:

�̇r = �@H

@r
= 0 (9)

�̇v = �@H

@v
= ��r (10)

�̇m = �@H

@m
= � T

m2
||�v|| (11)

From the optimal control theory [11] it is proved that the thrust direction is:

t̂ = � �v

||�v||
(12)

and that the thrust magntitude can switch between min-max only twice at the most, that is, the thrust
magnitude has a bang-bang profile max-min-max. Therefore, we can write the thrust magnitude as func-
tion of time with t1 and t2 as parameters, where t1 and t2 are the times where the switches happen; i.e.
T = T (t; t1, t2).

TPBVP definition

Finally, considering the co-state equations derived in the previous subsection, our whole TPBVP becomes:

ṙ = v

v̇ = ag �
T (t; t1, t2)

m(t)

�v

||�v||
ṁ = �↵T (t; t1, t2)

�̇r = 0

�̇v = ��r

�̇m = �T (t; t1, t2)

m2
||�v||

6

subject to

is determined by expanding the function in an appropriate set of orthogonal polynomials (e.g., Chebyshev
polynomials) whose coefficients are found by direct application of a least-squares algorithms. Nonlinear
initial or boundary value problems require the implementation of an iterative least-squares approach to
converge to the desired solution.8

In this paper, we propose a new method based on ToC that can compute fuel-efficient trajectories fast and
accurately. After deriving the TPBVP arising from the fuel-efficient powered descent guidance necessary
conditions, the ToC is employed to generate a set of boundary condition-free equations that can be solved by
expanding the solution in chebyshev polynomials and computing the expansion coefficients using Iterative
Least Square (ILS) method. The proposed methodology is shown to be fast, accurate and thus potentially
suitable for on-board generation of optimal landing trajectories on planetary bodies.

PROBLEM FORMULATION

We consider the problem of powered descent guidance on a large body (e.g. Mars) and model the system
dynamics during the power descent as follows:

ṙ = v

v̇ = g +
T

m

ṁ = �↵T

(2)

where T = (||T ||)
1
2 .

T = T t̂ is the thrust and it is defined as follow:

0 Tmin T Tmax

||t̂|| = 1

g is the gravity acceleration and it is assumed to be constant. We have two boundary conditions (BCs) at the
initial t0 = 0 and final tf time.

At t0 = 0:
r(0) = r0

v(0) = v0

m(0) = m0

At tf :

r(tf) = rf

v(tf) = vf

The goal is to minimize the mass of propellant:

3

ṙ = v

v̇ = g � T (t; t1, t2)

m(t)

�v

||�v||
ṁ = �↵T (t; t1, t2)

�̇r = 0

�̇v = ��r

˙�m = �T (t; t1, t2)

m2
||�v||

At t0 = 0:

r(0) = r0

v(0) = v0

m(0) = m0

At tf :

r(tf) = rf

v(tf) = vf

�m(tf) = 0

By noting that:

1. ˙�m does not play any role once the thrust structure is defined (it only plays a role if � is used)

2. m(t) = m0 � ↵
R t
0 T (⌧ ; t1, t2)d⌧ ; where :

Z t

0
T (⌧ ; t1, t2)d⌧ = Tmax(t� t2 + t1) + Tmin(t2 � t1)

with t > t2 > t1. Thus m(t) = m0 � ↵ [Tmax(t� t2 + t1) + Tmin(t2 � t1)]

only the equations for r, v, �r, and �v are considered. Thus the TPBVP becomes:

ṙ = v (15)

v̇ = g � �(t)
�v

||�v||
(16)

�̇r = 0 (17)

�̇v = ��r (18)

7

• Two equations are redundant
once the thrust profile is known:

subject to r(0) = r0,v(0) = v0,m(0) = m0 at t0 = 0, and r(tf) = rf ,v(tf) = vf ,�m(tf) = 0 at tf .
However, by noting that 1) �̇m does not play any role once the thrust structure is defined, and the mass
m(t) is known once the thrust profile is known; only the equations for r, v, �r, and �v need to be solve via
TFC.

SOLUTION OF THE MOTION EQUATIONS VIA TFC

Formulation

With the simplifications introduced in the previous section, the TPBVP to be solved via TFC becomes:

ṙ = v (13)

v̇ = ag � �(t)
�v

||�v||
(14)

�̇r = 0 (15)

�̇v = ��r (16)

subject to r(0) = r0,v(0) = v0 at t0 = 0, and r(tf) = rf ,v(tf) = vf at tf .

Initially we tried to formulate the problem via TFC using the same approach used for the energy-optimal
guidance [12], as that formulation has an extremely straightforward implementation. However this approach
leads to non-accurate solutions due to the thrust bang–bang profile, as will be shown in the results section.
To overcome the issues due to the thrust profile, we tackled the problem via the piecewise TFC approach
[13]. To be noticed that still few equations are redundant and can be removed completely via the TFC
constrained expression to further simplify the solution of this nonlinear system of equations. First, TFC
constrained expression are analytical expressions meaning that derivative of a constrained expression for
r(t) is exactly the function v(t). Therefore, the differential equation expressed by Eq. (13) is unnecessary
and can be disregarded. Similarly, the equations for �̇r and �̇v can be simplified. First, let us express
the vector equations as three scalar equations each where the index i represents the individual components.
Using this notation we can expand �v such that,

�vi = a0i + a1it = hT
�⇠�i , for i = 1, 2, 3 (17)

which satisfies Eqs. (15-16) through

�̇vi = a1i

�̇vi = ��ri = �a1i

This process reduces the problem to the solution of a single differential equation expressed by Eq. (14).
Rewriting this differential equation in index notation and and collecting all terms on one side, a loss function
can be defined which is based on the residuals of the differential equation,

Li = ai � agi + �(t)
�vi

⇣P3
j=1 �

2
vj

⌘ 1
2

, for i = 1, 2, 3 (18)

7

subject to

At t0 = 0:

r(0) = r0

v(0) = v0

At tf :

r(tf) = rf

v(tf) = vf

where:

�(t) =
T (t; t1, t2)

m0 � ↵
R t
0 T (⌧ ; t1, t2)d⌧

=
T (t; t1, t2)

m0 � ↵[Tmax(t� t2 + t1) + Tmin(t2 � t1)]

Solving Procedure

The approach to solve our problem is the following:

1. given t1, t2, and tf solve for r,v,�r, and �v via Theory of Connections (ToC)6

2. solve for tf by zero-finding on the transversality condition:

H(tf) = 0

3. finding t1 and t2 (outer-loop) via cost function optimization:

minimize
t1,t2

J2(t1, t2) = ↵

Z tf

0
T (⌧ ; t1, t2)d⌧

The procedure is then repeated till convergence.

TOC FORMULATION

Again, the TPBVP to be reformulated is:

ṙ = v (19)

v̇ = g � �(t)
�v

||�v||
(20)

�̇r = 0 (21)

�̇v = ��r (22)

8

At t0 = 0:

r(0) = r0

v(0) = v0

At tf :

r(tf) = rf

v(tf) = vf

The constrained expression, according to8 and,9 for states and co-states are:

r(t) = gr(t) +
t� tf

t0 � tf
[r0 � gr0] +

t� t0

tf � t0
[rf � grf] (23)

v(t) = gv(t) +
t� tf

t0 � tf
[v0 � gv0] +

t� t0

tf � t0
[vf � gvf] (24)

�r(t) = g�r(t) (25)

�v(t) = g�v(t) (26)

By defining �t = tf � t0 we get:

r(t) = gr(t)�
t� tf

�t
[r0 � gr0] +

t� t0

�t
[rf � grf] (27)

v(t) = gv(t)�
t� tf

�t
[v0 � gv0] +

t� t0

�t
[vf � gvf] (28)

�r(t) = g�r(t) (29)

�v(t) = g�v(t) (30)

By taking the derivatives with respect t:

ġr �
r0 � gr0

�t
+

rf � grf

�t
= gv(t)�

t� tf

�t
[v0 � gv0] +

t� t0

�t
[vf � gvf] (31)

9

TPBVP to be solved via TFC

Drag picture to placeholder or click icon to addContents

• Introduction
§ Overview
§ Goals

• Background
§ Optimal Control for Space Guidance
§ TFC approach to solving a TPBVP

• Optimal Powered Descent Pinpoint Landing Problem
• Solution of the Motion Equations via TFC

§ Formulation
§ Results

• Conclusions and Outlooks

Drag picture to placeholder or click icon to addSolution of the Equations of Motions via TFC:
Formulation

• TFC constrained expressions are analytical expressions, therefore:
– The derivative of the constrained expression for 𝒓(𝑡) is exactly 𝒗(𝑡)
– The derivative of the constrained expression for 𝝀!(𝑡) is exactly −𝝀"(𝑡)

• The TPBVP further simplifies to a single differential equation:

subject to r(0) = r0,v(0) = v0,m(0) = m0 at t0 = 0, and r(tf) = rf ,v(tf) = vf ,�m(tf) = 0 at tf .
However, by noting that 1) �̇m does not play any role once the thrust structure is defined, and the mass
m(t) is known once the thrust profile is known; only the equations for r, v, �r, and �v need to be solve via
TFC.

SOLUTION OF THE MOTION EQUATIONS VIA TFC

Formulation

With the simplifications introduced in the previous section, the TPBVP to be solved via TFC becomes:

ṙ = v (13)

v̇ = ag � �(t)
�v

||�v||
(14)

�̇r = 0 (15)

�̇v = ��r (16)

subject to r(0) = r0,v(0) = v0 at t0 = 0, and r(tf) = rf ,v(tf) = vf at tf .

Initially we tried to formulate the problem via TFC using the same approach used for the energy-optimal
guidance [12], as that formulation has an extremely straightforward implementation. However this approach
leads to non-accurate solutions due to the thrust bang–bang profile, as will be shown in the results section.
To overcome the issues due to the thrust profile, we tackled the problem via the piecewise TFC approach
[13]. To be noticed that still few equations are redundant and can be removed completely via the TFC
constrained expression to further simplify the solution of this nonlinear system of equations. First, TFC
constrained expression are analytical expressions meaning that derivative of a constrained expression for
r(t) is exactly the function v(t). Therefore, the differential equation expressed by Eq. (13) is unnecessary
and can be disregarded. Similarly, the equations for �̇r and �̇v can be simplified. First, let us express
the vector equations as three scalar equations each where the index i represents the individual components.
Using this notation we can expand �v such that,

�vi = a0i + a1it = hT
�⇠�i , for i = 1, 2, 3 (17)

which satisfies Eqs. (15-16) through

�̇vi = a1i

�̇vi = ��ri = �a1i

This process reduces the problem to the solution of a single differential equation expressed by Eq. (14).
Rewriting this differential equation in index notation and and collecting all terms on one side, a loss function
can be defined which is based on the residuals of the differential equation,

Li = ai � agi + �(t)
�vi

⇣P3
j=1 �

2
vj

⌘ 1
2

, for i = 1, 2, 3 (18)

7

where :

produced, 8
>><

>>:

r0i � g0i

rfi � gfi
v0i � ġ0i

vfi � ġfi

9
>>=

>>;
=

2

664

1 s0 s
2
0 s

3
0

1 sf s
2
f s

3
f

0 1 2s0 3s20
0 1 2sf 3s2f

3

775

8
>><

>>:

⌘1i

⌘2i

⌘3i

⌘4i

9
>>=

>>;

By inverting this matrix and solving for the unknown vectors of ⌘i, the constrained expression takes the
following form,

ri = gi + ⌦1(r0i � g0i) + ⌦2(rfi � gfi) + ⌦3(v0i � ġ0i) + ⌦4(vfi � ġfi)

vi = ġi + ⌦̇1(r0i � g0i) + ⌦̇2(rfi � gfi) + ⌦̇3(v0i � ġ0i) + ⌦̇4(vfi � ġfi)

ai = g̈i + ⌦̈1(r0i � g0i) + ⌦̈2(rfi � gfi) + ⌦̈3(v0i � ġ0i) + ⌦̈4(vfi � ġfi)

(19)

where the ⌦ parameters are solely a function of the independent variable and act as switching functions
to force the expression to always satisfy the specified constraints. These functions and their associated
derivatives are summarized in Table 1 where we define �t := sf � s0 and t

⇤ := t� s0

⌦1(t, s0, sf) ⌦2(t, s0, sf) ⌦3(t, s0, sf) ⌦4(t, s0, sf)

(·) 1 +
2t3⇤
�t3

� 3t2⇤
�t2

� 2t3⇤
�t3

+
3t2⇤
�t2

t⇤ +
t
3
⇤

�t2
� 2t2⇤

�t

t
3
⇤

�t2
� t

2
⇤

�t

d

dt
(·) 6t2⇤

�t3
� 6t⇤

�t2
� 6t2⇤
�t3

+
6t⇤
�t2

1 +
3t2⇤
�t2

� 4t⇤
�t

3t2⇤
�t2

� 2t⇤
�t

d
2

dt2
(·) 12t⇤

�t3
� 6

�t2
�12t⇤
�t3

+
6

�t2

6t⇤
�t2

� 4

�t

6t⇤
�t2

� 2

�t

Table 1: Switching functions derived through the TFC approach for state and derivative boundary-value
problem. These functions are solely a function of the independent variable t.

The constrained expression detailed by Eq. (19) can be used as a template to write the constrained expres-
sions for each segment of the solution trajectory. In order to explicitly identify the segment, the presuper-
script notation will be used. For example, (1)

ri describes the position constrained expression for the first
segment defined on t 2 [t0, t1]. For this problem, s = 1 is defined on t 2 [t0, t1], s = 2 is defined on
t 2 [t1, t2], and s = 3 is defined on t 2 [t2, tf]. Using this formulation, the constrained expressions of
position for each segment are,
(1)

ri =
(1)

gi +
(1)⌦1

⇣
r0i � (1)

g0i

⌘
+ (1)⌦2

⇣
r1i � (1)

gfi

⌘
+ (1)⌦3

⇣
v0i � (1)

ġ0i

⌘
+ (1)⌦4

⇣
v1i � (1)

ġfi

⌘

(2)
ri =

(2)
gi +

(2)⌦1

⇣
r1i � (2)

g0i

⌘
+ (2)⌦2

⇣
r2i � (2)

gfi

⌘
+ (2)⌦3

⇣
v1i � (2)

ġ0i

⌘
+ (2)⌦4

⇣
v2i � (2)

ġfi

⌘

(3)
ri =

(3)
gi +

(3)⌦1

⇣
r2i � (3)

g0i

⌘
+ (3)⌦2

⇣
rfi � (3)

gfi

⌘
+ (3)⌦3

⇣
v2i � (3)

ġ0i

⌘
+ (3)⌦4

⇣
vfi � (3)

ġfi

⌘

where the derivative of these functions follow the form of Eq. (19). Now, the function of gi can also be
expressed as a linear basis such that,

gi = hT⇠i for i = 1, 2, 3.

9

subject to r(0) = r0,v(0) = v0,m(0) = m0 at t0 = 0, and r(tf) = rf ,v(tf) = vf ,�m(tf) = 0 at tf .
However, by noting that 1) �̇m does not play any role once the thrust structure is defined, and the mass
m(t) is known once the thrust profile is known; only the equations for r, v, �r, and �v need to be solve via
TFC.

SOLUTION OF THE MOTION EQUATIONS VIA TFC

Formulation

With the simplifications introduced in the previous section, the TPBVP to be solved via TFC becomes:

ṙ = v (13)

v̇ = ag � �(t)
�v

||�v||
(14)

�̇r = 0 (15)

�̇v = ��r (16)

subject to r(0) = r0,v(0) = v0 at t0 = 0, and r(tf) = rf ,v(tf) = vf at tf .

Initially we tried to formulate the problem via TFC using the same approach used for the energy-optimal
guidance [12], as that formulation has an extremely straightforward implementation. However this approach
leads to non-accurate solutions due to the thrust bang–bang profile, as will be shown in the results section.
To overcome the issues due to the thrust profile, we tackled the problem via the piecewise TFC approach
[13]. To be noticed that still few equations are redundant and can be removed completely via the TFC
constrained expression to further simplify the solution of this nonlinear system of equations. First, TFC
constrained expression are analytical expressions meaning that derivative of a constrained expression for
r(t) is exactly the function v(t). Therefore, the differential equation expressed by Eq. (13) is unnecessary
and can be disregarded. Similarly, the equations for �̇r and �̇v can be simplified. First, let us express
the vector equations as three scalar equations each where the index i represents the individual components.
Using this notation we can expand �v such that,

�vi = a0i + a1it = hT
�⇠�i , for i = 1, 2, 3 (17)

which satisfies Eqs. (15-16) through

�̇vi = a1i

�̇vi = ��ri = �a1i

This process reduces the problem to the solution of a single differential equation expressed by Eq. (14).
Rewriting this differential equation in index notation and and collecting all terms on one side, a loss function
can be defined which is based on the residuals of the differential equation,

Li = ai � agi + �(t)
�vi

⇣P3
j=1 �

2
vj

⌘ 1
2

, for i = 1, 2, 3 (18)

7

• The Ω parameters are solely function of 𝑡 and are switching functions (derived
through TFC) to force the expression to always satisfy the constraints

(4)

,

produced, 8
>><

>>:

r0i � g0i

rfi � gfi
v0i � ġ0i

vfi � ġfi

9
>>=

>>;
=

2

664

1 s0 s
2
0 s

3
0

1 sf s
2
f s

3
f

0 1 2s0 3s20
0 1 2sf 3s2f

3

775

8
>><

>>:

⌘1i

⌘2i

⌘3i

⌘4i

9
>>=

>>;

By inverting this matrix and solving for the unknown vectors of ⌘i, the constrained expression takes the
following form,

ri = gi + ⌦1(r0i � g0i) + ⌦2(rfi � gfi) + ⌦3(v0i � ġ0i) + ⌦4(vfi � ġfi)

vi = ġi + ⌦̇1(r0i � g0i) + ⌦̇2(rfi � gfi) + ⌦̇3(v0i � ġ0i) + ⌦̇4(vfi � ġfi)

ai = g̈i + ⌦̈1(r0i � g0i) + ⌦̈2(rfi � gfi) + ⌦̈3(v0i � ġ0i) + ⌦̈4(vfi � ġfi)

(19)

where the ⌦ parameters are solely a function of the independent variable and act as switching functions
to force the expression to always satisfy the specified constraints. These functions and their associated
derivatives are summarized in Table 1 where we define �t := sf � s0 and t

⇤ := t� s0

⌦1(t, s0, sf) ⌦2(t, s0, sf) ⌦3(t, s0, sf) ⌦4(t, s0, sf)

(·) 1 +
2t3⇤
�t3

� 3t2⇤
�t2

� 2t3⇤
�t3

+
3t2⇤
�t2

t⇤ +
t
3
⇤

�t2
� 2t2⇤

�t

t
3
⇤

�t2
� t

2
⇤

�t

d

dt
(·) 6t2⇤

�t3
� 6t⇤

�t2
� 6t2⇤
�t3

+
6t⇤
�t2

1 +
3t2⇤
�t2

� 4t⇤
�t

3t2⇤
�t2

� 2t⇤
�t

d
2

dt2
(·) 12t⇤

�t3
� 6

�t2
�12t⇤
�t3

+
6

�t2

6t⇤
�t2

� 4

�t

6t⇤
�t2

� 2

�t

Table 1: Switching functions derived through the TFC approach for state and derivative boundary-value
problem. These functions are solely a function of the independent variable t.

The constrained expression detailed by Eq. (19) can be used as a template to write the constrained expres-
sions for each segment of the solution trajectory. In order to explicitly identify the segment, the presuper-
script notation will be used. For example, (1)

ri describes the position constrained expression for the first
segment defined on t 2 [t0, t1]. For this problem, s = 1 is defined on t 2 [t0, t1], s = 2 is defined on
t 2 [t1, t2], and s = 3 is defined on t 2 [t2, tf]. Using this formulation, the constrained expressions of
position for each segment are,
(1)

ri =
(1)

gi +
(1)⌦1

⇣
r0i � (1)

g0i

⌘
+ (1)⌦2

⇣
r1i � (1)

gfi

⌘
+ (1)⌦3

⇣
v0i � (1)

ġ0i

⌘
+ (1)⌦4

⇣
v1i � (1)

ġfi

⌘

(2)
ri =

(2)
gi +

(2)⌦1

⇣
r1i � (2)

g0i

⌘
+ (2)⌦2

⇣
r2i � (2)

gfi

⌘
+ (2)⌦3

⇣
v1i � (2)

ġ0i

⌘
+ (2)⌦4

⇣
v2i � (2)

ġfi

⌘

(3)
ri =

(3)
gi +

(3)⌦1

⇣
r2i � (3)

g0i

⌘
+ (3)⌦2

⇣
rfi � (3)

gfi

⌘
+ (3)⌦3

⇣
v2i � (3)

ġ0i

⌘
+ (3)⌦4

⇣
vfi � (3)

ġfi

⌘

where the derivative of these functions follow the form of Eq. (19). Now, the function of gi can also be
expressed as a linear basis such that,

gi = hT⇠i for i = 1, 2, 3.

9

Drag picture to placeholder or click icon to addSolution of the Equations of Motions via TFC:
Formulation

• Due to the thrust bang-bang profile the TPBVP needs to be solved via the TFC
piecewise approach [Johnston and Mortari in progress]:
– The domain [𝑡2, 𝑡3] is split into three segments

§ Three distinct differential equations like (4) , governing the dynamic in each domain, must be solved
simultaneously

�r1
�v1

<latexit sha1_base64="Wj6X78joHG85Ytjf7LVO89Ue2S8=">AAACpnicbZFNT9wwEIa9KbQ0/WBp1RMXq6tKHOgqoZVaqT0geuGEqLTLIq3D4jhesPBHZE8okZUf02v7i/pv8IYcSmAkS4/edzwzmslLKRwkyb9B9GRt/emzjefxi5evXm8Ot96cOFNZxqfMSGNPc+q4FJpPQYDkp6XlVOWSz/KrHyt/ds2tE0ZPoC55puiFFkvBKARpMXx39pEceNssUkLilq8DL4ajZJy0gR9C2sEIdXG82BrUpDCsUlwDk9S5eZqUkHlqQTDJm5hUjpeUXdELPg+oqeIu8+38Df4QlAIvjQ1PA27V/394qpyrVR4yFYVL1/dW4mPevILl18wLXVbANbtrtKwkBoNXy8CFsJyBrANQZkWYFbNLaimDsLL4Xptc7eJujBbanjHR/BczSlFdeDJxjT/zZJeo3Nx4AkLXeNI0vayDZp5m3pNc4VHaN4ui8eQbJsBvwBd9d9LW71cPx0r7p3kIJ3vj9NN47+fn0f737mwbaBu9RzsoRV/QPjpEx2iKGPLoN/qD/kY70VE0jWZ3qdGg+/MW3Yvo/BbrgdMB</latexit>

�r2
�v2

<latexit sha1_base64="UEWPIxrKCfOjNPKLmASmlzhkvZ4=">AAACpnicbZFNa9wwEIa17kdS9yObhp56EV0KOaSLvS2k0B5CeumpJLCbDaycrSxrExF9GGmcxgj/mFzbX9R/U63jQ+J0QPDwvqOZYSYvpXCQJH8H0aPHT55ubD6Ln794+WpruP36xJnKMj5jRhp7mlPHpdB8BgIkPy0tpyqXfJ5fflv78ytunTB6CnXJM0XPtVgJRiFIy+Gbsw/k0NtmOSEkbvkq8HI4SsZJG/ghpB2MUBdHy+1BTQrDKsU1MEmdW6RJCZmnFgSTvIlJ5XhJ2SU954uAmiruMt/O3+D3QSnwytjwNOBWvfvDU+VcrfKQqShcuL63Fv/nLSpYfc680GUFXLPbRqtKYjB4vQxcCMsZyDoAZVaEWTG7oJYyCCuL77XJ1R7uxmih7RkTzX8xoxTVhSdT1/gzT/aIys21JyB0jadN08s6bBZp5j3JFR6lfbMoGk++YAL8GnzRd6dt/X71cKy0f5qHcDIZpx/Hk+NPo4Ov3dk20Vv0Du2iFO2jA/QdHaEZYsijG/Qb/Yl2ox/RLJrfpkaD7s8OuhfRz3/v5dMD</latexit>

+r2
+v2

<latexit sha1_base64="BZzTjk1OLruKjlTbmDkedF6BIkY=">AAACpnicbZFNa9wwEIa17kdS9yObhp56EV0KgYbF3hZSaA8hvfRUEtjNBlbOVpa1iYg+jDROY4R/TK7tL+q/qdbxIXE6IHh439HMMJOXUjhIkr+D6NHjJ083Np/Fz1+8fLU13H594kxlGZ8xI409zanjUmg+AwGSn5aWU5VLPs8vv639+RW3Thg9hbrkmaLnWqwEoxCk5fDN2Qdy6G2znBASt3wVeDkcJeOkDfwQ0g5GqIuj5fagJoVhleIamKTOLdKkhMxTC4JJ3sSkcryk7JKe80VATRV3mW/nb/D7oBR4ZWx4GnCr3v3hqXKuVnnIVBQuXN9bi//zFhWsPmde6LICrtlto1UlMRi8XgYuhOUMZB2AMivCrJhdUEsZhJXF99rkag93Y7TQ9oyJ5r+YUYrqwpOpa/yZJ3tE5ebaExC6xtOm6WUdNos0857kCo/SvlkUjSdfMAF+Db7ou9O2fr96OFbaP81DOJmM04/jyfGn0cHX7myb6C16h3ZRivbRAfqOjtAMMeTRDfqN/kS70Y9oFs1vU6NB92cH3Yvo5z/nAdL/</latexit>

+r1
+v1

<latexit sha1_base64="LRhIAXKPSIGKueeD7fRtnUnxJ4Q=">AAACpnicbZFNa9wwEIa1btKm7kc2LT3lIroUAg2LnRZaaA8hveQUUtjNBlbORpa1iYg+jDROY4R/TK/tL+q/idbxoXEyIHh439HMMJOXUjhIkn+D6Mna+tNnG8/jFy9fvd4cbr05caayjE+Zkcae5tRxKTSfggDJT0vLqcoln+VXP1b+7JpbJ4yeQF3yTNELLZaCUQjSYvju7CM58LZZpITELV8HXgxHyThpAz+EtIMR6uJ4sTWoSWFYpbgGJqlz8zQpIfPUgmCSNzGpHC8pu6IXfB5QU8Vd5tv5G/whKAVeGhueBtyq///wVDlXqzxkKgqXru+txMe8eQXLr5kXuqyAa3bXaFlJDAavloELYTkDWQegzIowK2aX1FIGYWXxvTa52sXdGC20PWOi+S9mlKK68GTiGn/myS5RubnxBISu8aRpelkHzTzNvCe5wqO0bxZF48k3TIDfgC/67qSt368ejpX2T/MQTvbG6afx3s/Po/3v3dk20DZ6j3ZQir6gfXSIjtEUMeTRb/QH/Y12oqNoGs3uUqNB9+ctuhfR+S3indL9</latexit>

r0

v0
<latexit sha1_base64="Nds+wK9dD8RgeG9inhH4/gyJdnU=">AAAConicbZFNT9wwEIa9KS2Qfu2WYy9Wt5V6QKuEVipSe0BwQT2BugtI63TlOF6w8EdkT4DIyk/ptf1N/Td4Qw4QGMnSo/cdz4xm8lIKB0nyfxA9W3v+Yn1jM3756vWbt8PRuxNnKsv4jBlp7FlOHZdC8xkIkPystJyqXPLT/PJg5Z9eceuE0VOoS54peq7FUjAKQVoMR2Tf22aREBIHugq0GI6TSdIGfgxpB2PUxdFiNKhJYViluAYmqXPzNCkh89SCYJI3MakcLym7pOd8HlBTxV3m29kb/CkoBV4aG54G3Kr3f3iqnKtVHjIVhQvX91biU968guVu5oUuK+Ca3TVaVhKDwatF4EJYzkDWASizIsyK2QW1lEFYV/ygTa62cTdGC23PmGh+zYxSVBeeTF3jf3uyTVRubjwBoWs8bZpe1n4zTzPvSa7wOO2bRdF48h0T4Dfgi747bev3q4djpf3TPIaTnUn6ZbJz/HW896M72wZ6jz6gzyhF39AeOkRHaIYYukZ/0F/0L/oY/YyOo193qdGg+7OFHkREbgHeZNHB</latexit>

rf

vf
<latexit sha1_base64="LT6N/fV7/c93CeJWmJ/jg0m9rak=">AAAConicbZFNb9QwEIa9KdASvnbLkYvFgsShWiUFiUpwqMoFcWrFbltpHVaO47RW/RHZk7aRlZ/Clf6m/hu8aQ40ZSRLj953PDOaySspHCTJ7SjaePT4yebW0/jZ8xcvX40n28fO1JbxBTPS2NOcOi6F5gsQIPlpZTlVueQn+cW3tX9yya0TRs+hqXim6JkWpWAUgrQaT8iBt+2qJCQOdBloNZ4ms6QL/BDSHqaoj8PVZNSQwrBacQ1MUueWaVJB5qkFwSRvY1I7XlF2Qc/4MqCmirvMd7O3+H1QClwaG54G3Kn//vBUOdeoPGQqCudu6K3F/3nLGsq9zAtd1cA1u2tU1hKDwetF4EJYzkA2ASizIsyK2Tm1lEFYV3yvTa52cD9GB13PmGh+xYxSVBeezF3rf3myQ1Rurj0BoRs8b9tB1kG7TDPvSa7wNB2aRdF68gUT4Nfgi6E77+oPq4djpcPTPITj3Vn6cbZ79Gm6/7U/2xZ6g96iDyhFn9E++o4O0QIxdIV+oz/oJnoX/YiOop93qdGo//Ma3YuI/AXLH9It</latexit>

r(
t)
,v

(t
),
a
(t
)

<latexit sha1_base64="GFYHHYFWVepgdxX/hzmOZ+ekapw=">AAACrXicbZFbSxwxFMezU23t9rbWx/YhdCkoLNsZW7DQPoh96aPCrgqbcclksmswlyE5ow5hXvppfG2/Tb9Ns+NQdPRA4Mf5n1vOyQopHMTx3170ZG396bON5/0XL1+9fjPYfHvsTGkZnzIjjT3NqONSaD4FAZKfFpZTlUl+kl38WOknl9w6YfQEqoKnii61WAhGIbjmg/fkwNt6G3ZGONDlf6Irmg+G8ThuDD+EpIUhau1wvtmrSG5YqbgGJqlzsyQuIPXUgmCS131SOl5QdkGXfBZQU8Vd6ptv1Phj8OR4YWx4GnDjvZvhqXKuUlmIVBTOXVdbOR/TZiUsvqZe6KIErtlto0UpMRi82gnOheUMZBWAMivCrJidU0sZhM3177XJ1Ai3YzTQ9OwTza+YUYrq3JOJq/2ZJyOiMnPtCQhd4Uldd6IO6lmSek8yhYdJV8zz2pNvmAC/Bp931UlTv1s9HCvpnuYhHO+Ok8/j3aMvw/3v7dk20Dv0AW2jBO2hffQTHaIpYugXukG/0Z/oUzSNSHR2Gxr12pwtdM+i5T9JxNUt</latexit>

t
<latexit sha1_base64="g+wiB+8idw8P5mguodSMO33ocHY=">AAACkHicbVFNa9wwENU6/Ui3X0l67EV0KfQQFjspNNBCkvZSekpgNwms3CDLs4mIPow0bmOEf0Gu7Y/rv6nW8aFxOiB4vDczb0ZTVEp6TNM/o2TtwcNHj9efjJ8+e/7i5cbm1om3tRMwF1ZZd1ZwD0oamKNEBWeVA64LBafF1ZeVfvoDnJfWzLCpINf8wsilFBwjdYznG5N0mnZB74OsBxPSx9H55qhhpRW1BoNCce8XWVphHrhDKRS0Y1Z7qLi44hewiNBwDT4P3aQtfRuZki6ti88g7dh/KwLX3je6iJma46Ufaivyf9qixuVeHqSpagQjbo2WtaJo6WptWkoHAlUTARdOxlmpuOSOC4yfM75jU+ht2o/Rgc5zzAz8FFZrbsrAZr4N3wPbZrqw14GhNA2dte0g63O7yPIQWKHpJBuKZdkG9pEyhGsM5VCddf2H3eOxsuFp7oOTnWm2O905fj85+NSfbZ28Jm/IO5KRD+SAfCVHZE4EAXJDfpHfyVayl+wnh7epyaiveUXuRPLtL9Uay3A=</latexit>

• In each segment s (s = 1, 2, 3) the dynamic is regulated by the
following equation:

This allows us to collect the unknown ⇠i vectors and write the constrained expression in the form,

(1)
ri =

(1)
⇣
h� ⌦1h0 � ⌦2hf � ⌦3ḣ0 � ⌦4ḣf

⌘T
(1)⇠i +

(1)⌦1r0i +
(1)⌦2r1i +

(1)⌦3v0i +
(1)⌦4v1i

(2)
ri =

(2)
⇣
h� ⌦1h0 � ⌦2hf � ⌦3ḣ0 � ⌦4ḣf

⌘T
(2)⇠i +

(2)⌦1r1i +
(2)⌦2r2i +

(2)⌦3v1i +
(2)⌦4v2i

(3)
ri =

(3)
⇣
h� ⌦1h0 � ⌦2hf � ⌦3ḣ0 � ⌦4ḣf

⌘T
(3)⇠i +

(3)⌦1r2i +
(3)⌦2rfi +

(3)⌦3v2i +
(3)⌦4vfi

Along with the linear unknowns in ⇠i, the equation share linear unknowns in r1i , v1i , r2i , v2i which serve as
the embedded relative constraints between adjacent segments. With this new formulation, we now have 3
separate loss functions based on the residual of the differential equation over each segment (s) which are as
follows,

(s)Li =
(s)

ai � agi + �(t)
�vi

⇣P3
j=1 �

2
vj

⌘ 1
2

.

Note, although the costate constrained expressions do not need to be split into separate domains, when the
problem is discretized special attention must be paid to discretizing them according to the segment time
ranges. Now, in order to solve for the unknown ⇠i parameters a nonlinear least-squares technique can be
used. This requires the partials of the loss function to be taken with respect to all of the unknowns. All
partial derivatives for each segment and each unknown are provided below:

@
(s)Li

@
(s)⇠i

= (s)
⇣
h� ⌦̈1h0 � ⌦̈2hf � ⌦̈3ḣ0 � ⌦̈4ḣf

⌘T

@
(1)Li

@r1i
=

(1)
⌦̈2

@
(1)Li

@v1i
=

(1)
⌦̈4

@
(2)Li

@r1i
=

(2)
⌦̈1

@
(2)Li

@v1i
=

(2)
⌦̈3

@
(2)Li

@r2i
=

(2)
⌦̈2

@
(2)Li

@v2i
=

(2)
⌦̈4

@
(3)Li

@r2i
=

(3)
⌦̈1

@
(3)Li

@v2i
=

(3)
⌦̈3

For the costate portion, if i = j

@Li

@⇠�i

= �(t)

2

64
1

⇣P3
j=1 �

2
vj

⌘ 1
2

�
�
2
vi⇣P3

j=1 �
2
vj

⌘ 3
2

3

75hT
�

10

• The embedded relative constraints allow:
§ the continuity of position and velocity, between each segment

§ the jumps of the acceleration, between each segment

• The embedded relative are unknowns that will be computed via
the ILS

Drag picture to placeholder or click icon to addSolution of the Equations of Motions via TFC:
Formulation

• A loss function for each segment s (s = 1, 2, 3) and each component i (i =1, 2, 3) need to be defined
• For each loss function we need to take the partial derivative for each unknown
• By discretizing the each subdomain in N points we get:

if i 6= j

@Li

@⇠�j

= �(t)

2

64�
�vi�vj

⇣P3
j=1 �

2
vj

⌘ 3
2

3

75hT
�

Next, by discretizing the domain over N points, these partials become a vector or matrix where the second
dimension is the number of unknowns. All partials can be combined into one augmented matrix and one
augment vector for the loss function such that according to,

J =

2

64

(1)
J⇠

(1)
Jr1,v1 0(3N⇥3m) 0(3N⇥6) 0(3N⇥3m)

(1)
J⇠�

0(3N⇥3m)
(2)

Jr1,v1
(2)

J⇠
(2)

Jr2,v2 0(3N⇥3m)
(2)

J⇠�

0(3N⇥3m) 0(3N⇥6) 0(3N⇥3m)
(3)

Jr2,v2
(3)

J⇠
(3)

J⇠�

3

75

(9N⇥{9m+18})

(20)

with the augmented vector of the loss functions and unknown vector defined as,

L =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

(1)L1
(1)L2
(1)L3
(2)L1
(2)L2
(2)L3
(3)L1
(3)L2
(3)L3

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;
(9N⇥1)

, ⌅ =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(1)⇠1
(1)⇠2
(1)⇠3
r1
v1

(2)⇠1
(2)⇠2
(2)⇠3
r2
v2

(3)⇠1
(3)⇠2
(3)⇠3
⇠�1

⇠�2

⇠�3

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
(9m+18)

The terms of Eq. (20) are defined by the following equations:

(s)
J⇠ =

2

66664

@ (s)L1

@ (s)⇠1
0 0

0 @ (s)L2

@ (s)⇠2
0

0 0 @ (s)L3

@ (s)⇠3

3

77775

(3N⇥3m)

,
(s)

J⇠� =

2

64
J⇠�11

J⇠�12
J⇠�13

J⇠�21
J⇠�22

J⇠�23
J⇠�31

J⇠�32
J⇠�33

3

75

(3N⇥6)

11

if i 6= j

@Li

@⇠�j

= �(t)

2

64�
�vi�vj

⇣P3
j=1 �

2
vj

⌘ 3
2

3

75hT
�

Next, by discretizing the domain over N points, these partials become a vector or matrix where the second
dimension is the number of unknowns. All partials can be combined into one augmented matrix and one
augment vector for the loss function such that according to,

J =

2

64

(1)
J⇠

(1)
Jr1,v1 0(3N⇥3m) 0(3N⇥6) 0(3N⇥3m)

(1)
J⇠�

0(3N⇥3m)
(2)

Jr1,v1
(2)

J⇠
(2)

Jr2,v2 0(3N⇥3m)
(2)

J⇠�

0(3N⇥3m) 0(3N⇥6) 0(3N⇥3m)
(3)

Jr2,v2
(3)

J⇠
(3)

J⇠�

3

75

(9N⇥{9m+18})

(20)

with the augmented vector of the loss functions and unknown vector defined as,

L =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

(1)L1
(1)L2
(1)L3
(2)L1
(2)L2
(2)L3
(3)L1
(3)L2
(3)L3

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;
(9N⇥1)

, ⌅ =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(1)⇠1
(1)⇠2
(1)⇠3
r1
v1

(2)⇠1
(2)⇠2
(2)⇠3
r2
v2

(3)⇠1
(3)⇠2
(3)⇠3
⇠�1

⇠�2

⇠�3

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
(9m+18)

The terms of Eq. (20) are defined by the following equations:

(s)
J⇠ =

2

66664

@ (s)L1

@ (s)⇠1
0 0

0 @ (s)L2

@ (s)⇠2
0

0 0 @ (s)L3

@ (s)⇠3

3

77775

(3N⇥3m)

,
(s)

J⇠� =

2

64
J⇠�11

J⇠�12
J⇠�13

J⇠�21
J⇠�22

J⇠�23
J⇠�31

J⇠�32
J⇠�33

3

75

(3N⇥6)

11

if i 6= j

@Li

@⇠�j

= �(t)

2

64�
�vi�vj

⇣P3
j=1 �

2
vj

⌘ 3
2

3

75hT
�

Next, by discretizing the domain over N points, these partials become a vector or matrix where the second
dimension is the number of unknowns. All partials can be combined into one augmented matrix and one
augment vector for the loss function such that according to,

J =

2

64

(1)
J⇠

(1)
Jr1,v1 0(3N⇥3m) 0(3N⇥6) 0(3N⇥3m)

(1)
J⇠�

0(3N⇥3m)
(2)

Jr1,v1
(2)

J⇠
(2)

Jr2,v2 0(3N⇥3m)
(2)

J⇠�

0(3N⇥3m) 0(3N⇥6) 0(3N⇥3m)
(3)

Jr2,v2
(3)

J⇠
(3)

J⇠�

3

75

(9N⇥{9m+18})

(20)

with the augmented vector of the loss functions and unknown vector defined as,

L =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

(1)L1
(1)L2
(1)L3
(2)L1
(2)L2
(2)L3
(3)L1
(3)L2
(3)L3

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;
(9N⇥1)

, ⌅ =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(1)⇠1
(1)⇠2
(1)⇠3
r1
v1

(2)⇠1
(2)⇠2
(2)⇠3
r2
v2

(3)⇠1
(3)⇠2
(3)⇠3
⇠�1

⇠�2

⇠�3

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
(9m+18)

The terms of Eq. (20) are defined by the following equations:

(s)
J⇠ =

2

66664

@ (s)L1

@ (s)⇠1
0 0

0 @ (s)L2

@ (s)⇠2
0

0 0 @ (s)L3

@ (s)⇠3

3

77775

(3N⇥3m)

,
(s)

J⇠� =

2

64
J⇠�11

J⇠�12
J⇠�13

J⇠�21
J⇠�22

J⇠�23
J⇠�31

J⇠�32
J⇠�33

3

75

(3N⇥6)

11

if i 6= j

@Li

@⇠�j

= �(t)

2

64�
�vi�vj

⇣P3
j=1 �

2
vj

⌘ 3
2

3

75hT
�

Next, by discretizing the domain over N points, these partials become a vector or matrix where the second
dimension is the number of unknowns. All partials can be combined into one augmented matrix and one
augment vector for the loss function such that according to,

J =

2

64

(1)
J⇠

(1)
Jr1,v1 0(3N⇥3m) 0(3N⇥6) 0(3N⇥3m)

(1)
J⇠�

0(3N⇥3m)
(2)

Jr1,v1
(2)

J⇠
(2)

Jr2,v2 0(3N⇥3m)
(2)

J⇠�

0(3N⇥3m) 0(3N⇥6) 0(3N⇥3m)
(3)

Jr2,v2
(3)

J⇠
(3)

J⇠�

3

75

(9N⇥{9m+18})

(20)

with the augmented vector of the loss functions and unknown vector defined as,

L =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

(1)L1
(1)L2
(1)L3
(2)L1
(2)L2
(2)L3
(3)L1
(3)L2
(3)L3

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;
(9N⇥1)

, ⌅ =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(1)⇠1
(1)⇠2
(1)⇠3
r1
v1

(2)⇠1
(2)⇠2
(2)⇠3
r2
v2

(3)⇠1
(3)⇠2
(3)⇠3
⇠�1

⇠�2

⇠�3

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
(9m+18)

The terms of Eq. (20) are defined by the following equations:

(s)
J⇠ =

2

66664

@ (s)L1

@ (s)⇠1
0 0

0 @ (s)L2

@ (s)⇠2
0

0 0 @ (s)L3

@ (s)⇠3

3

77775

(3N⇥3m)

,
(s)

J⇠� =

2

64
J⇠�11

J⇠�12
J⇠�13

J⇠�21
J⇠�22

J⇠�23
J⇠�31

J⇠�32
J⇠�33

3

75

(3N⇥6)

11

(1)
Jr1,v1 =

2

664

(1)
⌦̈2 0 0

(1)
⌦̈4 0 0

0
(1)

⌦̈2 0 0
(1)

⌦̈4 0

0 0
(1)

⌦̈2 0 0
(1)

⌦̈4

3

775

(3N⇥6)

(2)
Jr1,v1 =

2

664

(1)
⌦̈1 0 0

(1)
⌦̈3 0 0

0
(1)

⌦̈1 0 0
(1)

⌦̈3 0

0 0
(1)

⌦̈1 0 0
(1)

⌦̈3

3

775

(3N⇥6)

(2)
Jr2,v2 =

2

664

(2)
⌦̈2 0 0

(2)
⌦̈4 0 0

0
(2)

⌦̈2 0 0
(2)

⌦̈4 0

0 0
(2)

⌦̈2 0 0
(2)

⌦̈4

3

775

(3N⇥6)

(3)
Jr2,v2 =

2

664

(3)
⌦̈1 0 0

(3)
⌦̈3 0 0

0
(3)

⌦̈1 0 0
(3)

⌦̈3 0

0 0
(3)

⌦̈1 0 0
(3)

⌦̈3

3

775

(3N⇥6)

Finally, using Eq (20) along with the augment loss functions and unknown vector, an iterative least-square
approach can be used to update the unknown parameters according to,

⌅k+1 = ⌅k � (JT
kJk)�1JT

kLk

It must be noted that an initial estimate of the parameters is needed in order to initialize the iterative least-
squares process. Since the problem is a boundary-value problem, a first guess for (s)⇠i, r1, r2,v1, and v2
can be determined by simply connecting the initial and final position with a straight line and using this
trajectory for a least squares fitting of the constrained expressions describing the (s)

ri terms. Next, since the
�vi constrained expressions are unconstrained, no intelligent guess for the values can be constructed and in
all tests the ⇠�i values were initialized as a random vectors such that ⇠�i s N (0,�2

I2⇥2).

Results

A test for a specific vehicle – vex = 2207.250 [m/s], Tmin = 4500 [N], and Tmax = 12000 [N] – for
Mars landing was conduct to analyze the accuracy and convergence of the proposed method, with both the
formulations used. Table 2 describes the state boundary conditions and Table 3 specifies the TFC parameters
used with the piecewise approach.

12

Iterative least-square

Drag picture to placeholder or click icon to addSolution of the Equations of Motions via TFC:
Results

• Accuracy and convergence of TFC in solving the equations of motion are tested for
a specific vehicle for Mars landing

(1)
Jr1,v1 =

2

664

(1)
⌦̈2 0 0

(1)
⌦̈4 0 0

0
(1)

⌦̈2 0 0
(1)

⌦̈4 0

0 0
(1)

⌦̈2 0 0
(1)

⌦̈4

3

775

(3N⇥6)

(2)
Jr1,v1 =

2

664

(1)
⌦̈1 0 0

(1)
⌦̈3 0 0

0
(1)

⌦̈1 0 0
(1)

⌦̈3 0

0 0
(1)

⌦̈1 0 0
(1)

⌦̈3

3

775

(3N⇥6)

(2)
Jr2,v2 =

2

664

(2)
⌦̈2 0 0

(2)
⌦̈4 0 0

0
(2)

⌦̈2 0 0
(2)

⌦̈4 0

0 0
(2)

⌦̈2 0 0
(2)

⌦̈4

3

775

(3N⇥6)

(3)
Jr2,v2 =

2

664

(3)
⌦̈1 0 0

(3)
⌦̈3 0 0

0
(3)

⌦̈1 0 0
(3)

⌦̈3 0

0 0
(3)

⌦̈1 0 0
(3)

⌦̈3

3

775

(3N⇥6)

Finally, using Eq (20) along with the augment loss functions and unknown vector, an iterative least-square
approach can be used to update the unknown parameters according to,

⌅k+1 = ⌅k � (JT
kJk)�1JT

kLk

It must be noted that an initial estimate of the parameters is needed in order to initialize the iterative least-
squares process. Since the problem is a boundary-value problem, a first guess for (s)⇠i, r1, r2,v1, and v2
can be determined by simply connecting the initial and final position with a straight line and using this
trajectory for a least squares fitting of the constrained expressions describing the (s)

ri terms. Next, since the
�vi constrained expressions are unconstrained, no intelligent guess for the values can be constructed and in
all tests the ⇠�i values were initialized as a random vectors such that ⇠�i s N (0,�2

I2⇥2).

Results

A test for a specific vehicle – vex = 2207.250 [m/s], Tmin = 4500 [N], and Tmax = 12000 [N] – for
Mars landing was conduct to analyze the accuracy and convergence of the proposed method, with both the
formulations used. Table 2 describes the state boundary conditions and Table 3 specifies the TFC parameters
used with the piecewise approach.

12

Variable Initial Final

r [m]
�
�500, �1000, 1500

 T �
0, 0, 0

 T

v [m/s]
�
120, �60, �60

 T �
0, 0, 0

 T

m [kg] 1905.00 -

Table 2: State boundary conditions. Note, the final mass mf is free.

Variable Value

Points per segment (N) 100

Number of basis functions per segment (m) 60

Convergence criteria of loss function: L2[L] < ✏ 10�12

Table 3: TFC parameters for numerical test with the piecewise approach.

The results of this test are display in Figs. 2, 3, and 4 showing that the first approach used, despite its
straightforward implementation, leads to not accurate solutions as it can not handle the jumps in the dynam-
ics due to the thrust profile Fig. 2(c). By analyzing Fig. 3, it can be seen that the piecewise TFC approach
successfully handles the jumps in the governing dynamics due to the max-min-max thrust profile. Further-
more, through the optimization the final mass (mf) was determined to be 1557.938 [kg] and is displayed on
Fig. 3(d). Additional results detailing the number of iterations, L2-norm of the residuals, final mass, and
switching times are provided in Table 4. Furthermore, as a gauge of accuracy, Fig. 4 shows the residuals of
the differential equations (the values of the loss function L) and the time history of the Hamiltonian. While
the residuals in Fig. 4(a) so that the dynamics are being satisfied, it is clear that the solution is suboptimal
since the Hamiltonian is not zero as show in Fig. 4(b). A path toward resolving this issue is provided in the
following section.

Variable Original TFC [12] Piecewise TFC GPOPS

Iterations 20 10 -

L2[L] 3.72 1.66⇥ 10�13 -

mf [kg] 1556.63 1557.94 1556.63

t1 [sec] 46.51 46.64 46.51

t2 [sec] 66.04 66.44 66.04

tf [sec] 76.29 76.21 76.29

Table 4: TFC parameters for numerical test.

13

Variable Initial Final

r [m]
�
�500, �1000, 1500

 T �
0, 0, 0

 T

v [m/s]
�
120, �60, �60

 T �
0, 0, 0

 T

m [kg] 1905.00 -

Table 2: State boundary conditions. Note, the final mass mf is free.

Variable Value

Points per segment (N) 100

Number of basis functions per segment (m) 60

Convergence criteria of loss function: L2[L] < ✏ 10�12

Table 3: TFC parameters for numerical test with the piecewise approach.

The results of this test are display in Figs. 2, 3, and 4 showing that the first approach used, despite its
straightforward implementation, leads to not accurate solutions as it can not handle the jumps in the dynam-
ics due to the thrust profile Fig. 2(c). By analyzing Fig. 3, it can be seen that the piecewise TFC approach
successfully handles the jumps in the governing dynamics due to the max-min-max thrust profile. Further-
more, through the optimization the final mass (mf) was determined to be 1557.938 [kg] and is displayed on
Fig. 3(d). Additional results detailing the number of iterations, L2-norm of the residuals, final mass, and
switching times are provided in Table 4. Furthermore, as a gauge of accuracy, Fig. 4 shows the residuals of
the differential equations (the values of the loss function L) and the time history of the Hamiltonian. While
the residuals in Fig. 4(a) so that the dynamics are being satisfied, it is clear that the solution is suboptimal
since the Hamiltonian is not zero as show in Fig. 4(b). A path toward resolving this issue is provided in the
following section.

Variable Original TFC [12] Piecewise TFC GPOPS

Iterations 20 10 -

L2[L] 3.72 1.66⇥ 10�13 -

mf [kg] 1556.63 1557.94 1556.63

t1 [sec] 46.51 46.64 46.51

t2 [sec] 66.04 66.44 66.04

tf [sec] 76.29 76.21 76.29

Table 4: TFC parameters for numerical test.

13

Vehicle specifics

State boundary conditions TFC parameters for the numerical test

Drag picture to placeholder or click icon to addSolution of the Equations of Motions via TFC:
Results

0 20 40 60
-2000

-1500

-1000

-500

0

500

1000

1500
r1
r2
r3

(a) Time history of the position.

0 20 40 60
-100

-50

0

50

100

150
v1
v2
v3

(b) Time history of the velocity.

0 20 40 60
-6

-4

-2

0

2

4

6 a1
a2
a3

(c) Time history of the acceleration.

0 20 40 60
1550

1600

1650

1700

1750

1800

1850

1900

1950

(d) Propellant mass over trajectory.

Figure 3: Time histories of states with piecewise approach: a) position, b) velocity, c) acceleration, and d)
mass. By analyzing the plot of the acceleration, it can be seen that the piecewise TFC approach accurately
accommodates for jump in dynamics due to the bang-bang thrust profile. This is apparent in the parts b) and
c).

15

0 20 40 6010-16

10-15

10-14

(a) Residual of governing differential equation.

0 20 40 60
-30

-25

-20

-15

-10

-5

(b) Time evolution of the Hamiltonian.

Figure 4: Accuracy of solution: The plots in this figure look to detail the accuracy of this method. It can be
seen that the residuals of the governing equations are solved on the order of 10�14 to 10�15. However, this
solution is not the optimal one since H(t) 6= 0.

16

Variable Initial Final

r [m]
�
�500, �1000, 1500

 T �
0, 0, 0

 T

v [m/s]
�
120, �60, �60

 T �
0, 0, 0

 T

m [kg] 1905.00 -

Table 2: State boundary conditions. Note, the final mass mf is free.

Variable Value

Points per segment (N) 100

Number of basis functions per segment (m) 60

Convergence criteria of loss function: L2[L] < ✏ 10�12

Table 3: TFC parameters for numerical test with the piecewise approach.

The results of this test are display in Figs. 2, 3, and 4 showing that the first approach used, despite its
straightforward implementation, leads to not accurate solutions as it can not handle the jumps in the dynam-
ics due to the thrust profile Fig. 2(c). By analyzing Fig. 3, it can be seen that the piecewise TFC approach
successfully handles the jumps in the governing dynamics due to the max-min-max thrust profile. Further-
more, through the optimization the final mass (mf) was determined to be 1557.938 [kg] and is displayed on
Fig. 3(d). Additional results detailing the number of iterations, L2-norm of the residuals, final mass, and
switching times are provided in Table 4. Furthermore, as a gauge of accuracy, Fig. 4 shows the residuals of
the differential equations (the values of the loss function L) and the time history of the Hamiltonian. While
the residuals in Fig. 4(a) so that the dynamics are being satisfied, it is clear that the solution is suboptimal
since the Hamiltonian is not zero as show in Fig. 4(b). A path toward resolving this issue is provided in the
following section.

Variable Original TFC [12] Piecewise TFC GPOPS

Iterations 20 10 -

L2[L] 3.72 1.66⇥ 10�13 -

mf [kg] 1556.63 1557.94 1556.63

t1 [sec] 46.51 46.64 46.51

t2 [sec] 66.04 66.44 66.04

tf [sec] 76.29 76.21 76.29

Table 4: TFC parameters for numerical test.

13

Variable Initial Final

r [m]
�
�500, �1000, 1500

 T �
0, 0, 0

 T

v [m/s]
�
120, �60, �60

 T �
0, 0, 0

 T

m [kg] 1905.00 -

Table 2: State boundary conditions. Note, the final mass mf is free.

Variable Value

Points per segment (N) 100

Number of basis functions per segment (m) 60

Convergence criteria of loss function: L2[L] < ✏ 10�12

Table 3: TFC parameters for numerical test with the piecewise approach.

The results of this test are display in Figs. 2, 3, and 4 showing that the first approach used, despite its
straightforward implementation, leads to not accurate solutions as it can not handle the jumps in the dynam-
ics due to the thrust profile Fig. 2(c). By analyzing Fig. 3, it can be seen that the piecewise TFC approach
successfully handles the jumps in the governing dynamics due to the max-min-max thrust profile. Further-
more, through the optimization the final mass (mf) was determined to be 1557.938 [kg] and is displayed on
Fig. 3(d). Additional results detailing the number of iterations, L2-norm of the residuals, final mass, and
switching times are provided in Table 4. Furthermore, as a gauge of accuracy, Fig. 4 shows the residuals of
the differential equations (the values of the loss function L) and the time history of the Hamiltonian. While
the residuals in Fig. 4(a) so that the dynamics are being satisfied, it is clear that the solution is suboptimal
since the Hamiltonian is not zero as show in Fig. 4(b). A path toward resolving this issue is provided in the
following section.

Variable Original TFC [12] Piecewise TFC GPOPS

Iterations 20 10 -

L2[L] 3.72 1.66⇥ 10�13 -

mf [kg] 1556.63 1557.94 1556.63

t1 [sec] 46.51 46.64 46.51

t2 [sec] 66.04 66.44 66.04

tf [sec] 76.29 76.21 76.29

Table 4: TFC parameters for numerical test.

13

Convergence in only 10
iterations !!!

Would improve with a better first guess for the coefficients

Drag picture to placeholder or click icon to addContents

• Introduction
§ Overview
§ Goals

• Background
§ Optimal Control for Space Guidance
§ TFC approach to solving a TPBVP

• Optimal Powered Descent Pinpoint Landing Problem
• Solution of the Motion Equations via TFC

§ Formulation
§ Results

• Conclusions and Outlooks

Drag picture to placeholder or click icon to addConclusions and Outlooks

• TFC was successfully applied to solve the equations of motion for the fuel-efficient powered
descent guidance
– Machine error accuracy

– Convergence achieved with only ten iterations

• Accurate trajectories, but still suboptimal as the condition for the free-time problem is not
yet met
– The switching times and the final time are suboptimal

– The propellant used is not yet optimal

• Work in progress to develop the outer loop to find the optimal times that minimize the use of
propellant such that
– 𝐿6 𝕃 < ϵ

– 𝐻 𝑡3 = 0

Drag picture to placeholder or click icon to add

Questions ???

Drag picture to placeholder or click icon to add

Thanks for the
attention

