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* Precision landing on planetary bodies is
a key technology for future human and
robotic exploration of the solar system

* To access planetary surfaces the landing
system technology will need to progress
to satisfy the demand for more
stringent requirements

*  Extremely important for precision
landing is the ability to generate on-
board and track in real-time fuel
optimal trajectories
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* To develop a new algorithm, suitable for on-board application,
based on the recently developed Theory of Functional Connections
(TFC) [Mortari 2018] to compute fuel-efficient trajectories

* The focus of this talk is to show the capability of TFC in solving the
equations of motion for the fuel-efficient powered descent
guidance fast and with high accuracy
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» Optimal Control/Guidance is generally hard and computationally expensive
— No direct analytical solutions except in very limited cases

* Open-Loop solutions can be generally found in two ways

— Direct Method: Transform a continuous problem in a finite NLP problems and find the
minimum

= Convergence to a global minimum generally non-guaranteed

— Indirect Method: Apply Pontryagin Minimum Principle (PMP) to derive the necessary
conditions at the final time

= Solve a TPBVP (generally not well-posed)
* Recently, there have been a great interest in solving optimal guidance

problems in real-time

— Close the loop by a sequence of open-loop solutions
— Convexification approach: Solve a sequence of Convex Problems
= GQuarantee convergence to a global minimum in polynomial time
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* TFC derives expressions, called constrained expression, with an
embedded set of n linear constraints

y(t) = g(t) + > e ai(t) = g(t) + n'q(t)
k=1

* TFC has been successfully applied to solve linear [Mortari 2018],
and nonlinear [Mortari and Johnston 2018] differential equations
— Solutions computed via least-squares (iterative for the nonlinear case)

— Machine error accuracy in milliseconds
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* Consider the following second-order boundary value problem:

tn) =
F(t,y,y,9y) =0 subject to: y(to) = yo (1)
y(tf) = ys
* According to the literature [Mortari 2018] we have the following constrained
expression:

y(t) = g(t) +m +nat.
* By applying the constraints we get:

m = y i I :tf (yo — go)) — o (yf - gf))}

N2 = tfito (yf _9f> — (yo —go))},
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* Thus, the constrained expression and its derivatives become:

ty —1 t —to . 1 1 . .
Ry (Yo — go) + — (yy — 95) gty =gt

* By plugging into equation (1) we get:

~o

F(t,g,9,9) =0. (2)
* By discretizing the differential equation domain and defining the free function g(t) as
some known basis function (Chebyshev polynomials for this work) with unknown

coefficients, g(t) = fTh(x(t)), equation (2) reduces to:

~

F(§) =0 (3)

* (3)is aloss function that is solved for ¢ via different optimization schemes

— lterative least-square (ILS) for nonlinear differential equations
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* The system dynamics during the power descent on large bodies is given by:

r = v BCs Thrust
T r(0) =7y T(tf) =1y T =Tt
v = ag subject to v(0)= v )=V 0 < T < T < Ty
m m(0) = mo 1E]] = 1
m= —al
Differential Equations Constraints

* The goal is to minimize the mass of propellant:

by
minimize o / T dr where o is the reciprocal of the effective exhaust velocity of
Tty 0 the rocket engine
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* The necessary conditions for the optimal control problem calls for the Hamiltonian

T .
H=aoT + v+ A\, (ag+—t) — Amad
™m

*  From the optimal control theory is proved that:
— The thrust direction is: t =

v

Il
— The thrust profile is bang-bang

] ) te

*  From the Hamiltonian we derive the co-state equations Thrust profile [Ping Lu 2017]
: OH
A, = =0
" or
OH
Ay = = —A
(v a’U T
OH T
M= om = mal
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* The whole TPBVP becomes: = v r(0) = 7o
o T(tit1,t2) Ay v(0) = vy
’ m(t) [ A m(0) = my

m — —OéT(t;tl,tQ) .

A =0 subject to r(ts) = 1
Ao = =\, v(ty) = vy

o = — LTy ) Am(ts) = 0

™m

* Two equations are redundant /’f“ = v r(0) = 70

once the thrust profile is known: | A\, v(0) = g
V= ag_ﬁ(t)H)‘vH subject to

TPBVP to be solved via TFC
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* TFC constrained expressions are analytical expressions, therefore:

— The derivative of the constrained expression for r(t) is exactly v(t)

— The derivative of the constrained expression for 4,,(t) is exactly —A,.(t)

* The TPBVP further simplifies to a single differential equation:

Li=a;—ag + B(t) Av T, for 1=1,2,3 (4)
(Z?:l )\QQJJ) 2

where : a; = §; + Qi(ro, — g0,) + Q2(rs, — g7,) + Q3(vo, — do,) + Qu(vy, — G1), g; = hE;
)\Ui = ap, 1 Cblit = h;\f)\i

* The () parameters are solely function of t and are switching functions (derived
through TFC) to force the expression to always satisfy the constraints
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* Due to the thrust bang-bang profile the TPBVP needs to be solved via the TFC
piecewise approach [Johnston and Mortari in progress]:

— The domain [ty, t¢] is split into three segments

= Three distinct differential equations like (4) , governing the dynamic in each domain, must be solved
simultaneously

* Ineachsegments(s=1, 2, 3)the dynamic is regulated by the
following equation:

Ao,

S S [

S o Tmitm o Tmte oy (Z9-22)°
| | — ]
- — 1+ — 1+

— Vo U]_I V1 v2| (%) 'Uf . .
= | ' '} : * The embedded relative constraints allow:
= ! ! . the continuity of position and velocity, between each segment

the jumps of the acceleration, between each segment

! * The embedded relative are unknowns that will be computed via
t the ILS
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* Aloss function for each segment s (s =1, 2, 3) and each component i (i =1, 2, 3) need to be defined
* For each loss function we need to take the partial derivative for each unknown
* By discretizing the each subdomain in N points we get:

e - (1 1 Dy,
r(1)£1\ 821 ( )J€ ( )J’l“lfvl O(3N><3m) O(3N><6) O(3N><3m) ( )J.SA
D _ 2 2 2 2
)2, (;f?’ J = O(3N><3m) ( )J’l“1,’01 ( )JS ( )Jrz,”vz O(3N><3m) ( )JSA
v1 3 3 3
)z, g, Onssm) O@Nx6) O@anwsm) Dmw P Blg,
(2) L1 )¢, (ONx{9m+18})
L:<(2>£2> E:<(2:a£3>
(2) e h
<3>£3 ey = — T \—1T7T
(3)21 E3;£2 —k+1 — =k — ( k‘*]]k) JkLk’
2 353 \_ J
(3) e
L3, (9N x1) ?2 Iterative least-square
C SA3 ) (9m+18)
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* Accuracy and convergence of TFC in solving the equations of motion are tested for
a specific vehicle for Mars landing

Ver = 2207.250 [m/s], Tinin = 4500 [N], and 15,4 = 12000 [N]
Vehicle specifics

Variable Initial Final Variable Value

rm] | {-500, —1000, 1500} | {0, 0, 0} Points per segment (IV) 100

v [m/s] {1207 —60), _60}T {0, 0, O}T Number of basis functions per segment () 60

m [kg] 1905.00 - Convergence criteria of loss function: Lo[L] < ¢ || 10712

State boundary conditions TFC parameters for the numerical test
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4 )
Iterations 10

1850/
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S ©
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* \ 1600 | - : ~/
B | | \ 50 | g 157,938 ks Convergence in only 10
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t [sec] t [sec] IterathﬂS ! ! !
(c¢) Time history of the acceleration. (d) Propellant mass over trajectory.

Would improve with a better first guess for the coefficients
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* TFC was successfully applied to solve the equations of motion for the fuel-efficient powered
descent guidance

— Machine error accuracy

— Convergence achieved with only ten iterations

* Accurate trajectories, but still suboptimal as the condition for the free-time problem is not
yet met

— The switching times and the final time are suboptimal

— The propellant used is not yet optimal

* Work in progress to develop the outer loop to find the optimal times that minimize the use of
propellant such that

— Ly|L] < €

- H(t)=0
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