

Fuel-efficient Powered Descent Guidance on Planetary Bodies via Theory of Functional Connections

¹Enrico Schiassi, ¹Roberto Furfaro, ²Hunter Johnston, and ²Daniele Mortari

¹University of Arizona, USA ²Texas A&M University, USA

AAS/AIAA Astrodynamics Specialist Conference, Aug 19-718 2019, Portland, Maine, USA

Introduction

- Overview
- Goals
- Background
 - Optimal Control for Space Guidance
 - TFC approach to solving a TPBVP
- Optimal Powered Descent Pinpoint Landing Problem
- Solution of the Motion Equations via TFC
 - Formulation
 - Results
- Conclusions and Outlooks

nding Problem FC

Introduction

- Overview
- Goals
- Background
 - Optimal Control for Space Guidance
 - TFC approach to solving a TPBVP
- **Optimal Powered Descent Pinpoint Landing Problem**
- **Solution of the Motion Equations via TFC** Formulation
 - Results
- Conclusions and Outlooks

Introduction: Overview

- Precision landing on planetary bodies is a key technology for future human and robotic exploration of the solar system
- To access planetary surfaces the landing system technology will need to progress to satisfy the demand for more stringent requirements
- Extremely important for precision landing is the ability to generate onboard and track in real-time fuel optimal trajectories

Introduction: Goals

 To develop a new algorithm, suitable for on-board application, based on the recently developed Theory of Functional Connections (TFC) [Mortari 2018] to compute fuel-efficient trajectories

• The focus of this talk is to show the capability of TFC in solving the equations of motion for the fuel-efficient powered descent guidance fast and with high accuracy

Introduction
Overview
Goals

- Background
 - Optimal Control for Space Guidance
 - TFC approach to solving a TPBVP
- Optimal Powered Descent Pinpoint Landing Problem
- Solution of the Motion Equations via TFC
 Formulation
 - Results
- Conclusions and Outlooks

nding Problem FC

Optimal Control for Space Guidance

- Optimal Control/Guidance is generally hard and computationally expensive
 No direct analytical solutions except in very limited cases
- Open-Loop solutions can be generally found in two ways
 - Direct Method: Transform a continuous problem in a finite NLP problems and find the minimum
 - Convergence to a global minimum generally non-guaranteed
 - Indirect Method: Apply Pontryagin Minimum Principle (PMP) to derive the necessary conditions at the final time
 - Solve a TPBVP (generally not well-posed)
- Recently, there have been a great interest in solving optimal guidance problems in real-time
 - Close the loop by a sequence of open-loop solutions
 - Convexification approach: Solve a sequence of Convex Problems
 - Guarantee convergence to a global minimum in polynomial time

Problems lynomial time

TFC approach to solving a **TPBVP**

• TFC derives expressions, called constrained expression, with an embedded set of *n* linear constraints

$$y(t) = g(t) + \sum_{k=1}^{n} \eta_k q_k(t) = g(t)$$

- TFC has been successfully applied to solve linear [Mortari 2018], and nonlinear [Mortari and Johnston 2018] differential equations
 - Solutions computed via least-squares (iterative for the nonlinear case)
 - Machine error accuracy in milliseconds

 $t) + \boldsymbol{\eta}^{\mathrm{T}} \boldsymbol{q}(t)$

TFC approach to solving a **TPBVP**

Consider the following second-order boundary value problem:

$$F(t, y, \dot{y}, \ddot{y}) = 0 \quad \text{subject to:} \begin{cases} y \\ y \end{cases}$$

- According to the literature [Mortari 2018] we have the following constrained expression: $y(t) = g(t) + \eta_1 + \eta_2 t.$
- By applying the constraints we get:

$$\eta_{1} = \frac{1}{t_{f} - t_{0}} \Big[t_{f} \Big(y_{0} - g_{0} \Big) \Big) - t_{0} \Big(y_{f} - g_{f} \Big) \Big]$$

$$\eta_{2} = \frac{1}{t_{f} - t_{0}} \Big[\Big(y_{f} - g_{f} \Big) - \Big(y_{0} - g_{0} \Big) \Big],$$

 $y(t_0) = y_0$ $y(t_f) = y_f$ (1)

TFC approach to solving a **TPBVP**

Thus, the constrained expression and its derivatives become:

$$y(t) = g(t) + \frac{t_f - t}{t_f - t_0}(y_0 - g_0) + \frac{t - t_0}{t_f - t_0}(y_f - g_f) \qquad \dot{y}(t) = \dot{g}(t) - \frac{1}{t_f - t_0}(y_0 - g_0) + \frac{1}{t_f - t_0}(y_f - g_f) \qquad \ddot{y}(t) = \ddot{g}(t)$$

By plugging into equation (1) we get:

$$\tilde{F}(t,g,\dot{g},\ddot{g}) = 0.$$
 (2)

By discretizing the differential equation domain and defining the free function g(t) as some known basis function (Chebyshev polynomials for this work) with unknown coefficients, $g(t) = \xi^T h(x(t))$, equation (2) reduces to:

$$\tilde{F}(\boldsymbol{\xi}) = 0 \qquad (3)$$

- (3) is a loss function that is solved for ξ via different optimization schemes
 - Iterative least-square (ILS) for nonlinear differential equations

2)

3)

- Introduction
 - Overview
 - Goals
- Background
 - Optimal Control for Space Guidance TFC approach to solving a TPBVP
- **Optimal Powered Descent Pinpoint Landing Problem**
- **Solution of the Motion Equations via TFC** Formulation
 - Results
- **Conclusions and Outlooks**

Optimal Powered Descent Pinpoint Landing

The system dynamics during the power descent on large bodies is given by:

$$\dot{m{r}} = m{v}$$

 $\dot{m{v}} = m{a}_g + rac{m{T}}{m}$
 $\dot{m} = -lpha T$
subject to
 $\begin{array}{c} BCs\\ r(0) = m{r}_0 & r(0)\\ v(0) = m{v}_0 & v(0)\\ m(0) = m_0 \end{array}$

Differential Equations

• The goal is to minimize the mass of propellant:

$$\underset{T,t_f}{\text{minimize}} \quad \alpha \int_0^{t_f} T \, \mathrm{d}\tau$$

where α is the reciprocal of the effective exhaust velocity of the rocket engine

Thrust

 $(t_f) = \mathbf{r}_f$ $\mathbf{T} = T \, \hat{\mathbf{t}}$ $\mathbf{r}(t_f) = \mathbf{v}_f$ $0 \le T_{min} \le T \le T_{max}$ $||\hat{t}|| = 1$

Constraints

Optimal Powered Descent Pinpoint Landing

The necessary conditions for the optimal control problem calls for the Hamiltonian

$$H = \alpha T + \boldsymbol{\lambda}_r^{\mathrm{T}} \boldsymbol{v} + \boldsymbol{\lambda}_v^{\mathrm{T}} \left(\boldsymbol{a}_g + \frac{T}{m} \hat{\boldsymbol{t}} \right) - \boldsymbol{\lambda}$$

- From the optimal control theory is proved that: ullet
 - The thrust direction is: $\hat{m{t}} = -rac{m{\lambda}_v}{||m{\lambda}_v||}$ _____
 - The thrust profile is bang-bang
- From the Hamiltonian we derive the co-state equations

$$\dot{\boldsymbol{\lambda}}_{r} = -rac{\partial H}{\partial \boldsymbol{r}} = \mathbf{0}$$

 $\dot{\boldsymbol{\lambda}}_{v} = -rac{\partial H}{\partial \boldsymbol{v}} = -\boldsymbol{\lambda}_{r}$
 $\dot{\boldsymbol{\lambda}}_{m} = -rac{\partial H}{\partial m} = -rac{T}{m^{2}}||\boldsymbol{\lambda}_{v}||$

 $\lambda_m \alpha T$

Optimal Powered Descent Pinpoint Landing

• The whole TPBVP becomes:

• Two equations are redundant once the thrust profile is known:

$$\dot{\boldsymbol{v}} = \boldsymbol{a}_{g} - \frac{T(t; t_{1}, t_{2})}{m(t)} \frac{\boldsymbol{\lambda}_{v}}{||\boldsymbol{\lambda}_{v}||}$$
$$\dot{\boldsymbol{m}} = -\alpha T(t; t_{1}, t_{2})$$
$$\dot{\boldsymbol{\lambda}}_{r} = \boldsymbol{0}$$
$$\dot{\boldsymbol{\lambda}}_{v} = -\boldsymbol{\lambda}_{r}$$
$$\dot{\boldsymbol{\lambda}}_{m} = -\frac{T(t; t_{1}, t_{2})}{m^{2}} ||\boldsymbol{\lambda}_{v}||$$

 $\dot{r} = v$

$$egin{aligned} \dot{m{r}} &= m{v} \ \dot{m{v}} &= m{a}_g - eta(t) rac{m{\lambda}_v}{||m{\lambda}_v||} \ \dot{m{\lambda}_r &= m{0} \ \dot{m{\lambda}}_v &= -m{\lambda}_r \end{aligned}$$

TPBVP to be solved via TFC

$$egin{aligned} m{r}(0) &= m{r}_0 \ m{v}(0) &= m{v}_0 \ m{m}(0) &= m{m}_0 \end{aligned}$$

subject to

$$oldsymbol{r}(t_f) = oldsymbol{r}_f$$
 $oldsymbol{v}(t_f) = oldsymbol{v}_f$
 $\lambda_m(t_f) = 0$

$$oldsymbol{r}(0) = oldsymbol{r}_0$$

subject to $oldsymbol{v}(0) = oldsymbol{v}_0$
 $oldsymbol{r}(t_f) = oldsymbol{r}_f$
 $oldsymbol{v}(t_f) = oldsymbol{v}_f$

- Introduction
 - Overview
 - Goals
- Background
 - Optimal Control for Space Guidance
 - TFC approach to solving a TPBVP
- Optimal Powered Descent Pinpoint Landing Problem
- Solution of the Motion Equations via TFC
 - Formulation
 - Results
- Conclusions and Outlooks

nding Problem FC

Solution of the Equations of Motions via TFC: Formulation

- TFC constrained expressions are analytical expressions, therefore: ${\color{black}\bullet}$
 - The derivative of the constrained expression for r(t) is exactly v(t)
 - The derivative of the constrained expression for $\lambda_{\nu}(t)$ is exactly $-\lambda_{r}(t)$
- The TPBVP further simplifies to a single differential equation: $\mathcal{L}_{i} = a_{i} - a_{g_{i}} + \beta(t) \frac{\lambda_{v_{i}}}{\left(\sum_{i=1}^{3} \lambda_{v_{i}}^{2}\right)^{\frac{1}{2}}}, \quad \text{for} \quad i = 1, 2, 3$ (4)

where: $a_i = \ddot{g}_i + \ddot{\Omega}_1(r_{0_i} - g_{0_i}) + \ddot{\Omega}_2(r_{f_i} - g_{f_i}) + \ddot{\Omega}_3(v_{0_i} - \dot{g}_{0_i}) + \ddot{\Omega}_4(v_{f_i} - \dot{g}_{f_i})$, $q_i = h^{\mathrm{T}} \boldsymbol{\xi}_i$ $\lambda_{v_i} = a_{0_i} + a_{1_i}t = \boldsymbol{h}_{\lambda}^{\mathrm{T}}\boldsymbol{\xi}_{\lambda_i}$

The Ω parameters are solely function of t and are switching functions (derived) through TFC) to force the expression to always satisfy the constraints

Solution of the Equations of Motions via TFC: Formulation

- Due to the thrust bang-bang profile the TPBVP needs to be solved via the **TFC** • piecewise approach [Johnston and Mortari in progress]:
 - The domain $[t_0, t_f]$ is split into three segments ____
 - Three distinct differential equations like (4), governing the dynamic in each domain, must be solved simultaneously

In each segment s (s = 1, 2, 3) the dynamic is regulated by the

$$\mathcal{L}_i = {}^{(s)}a_i - a_{g_i} + \beta(t) \frac{\lambda_{v_i}}{\left(\sum_{j=1}^3 \lambda_{v_j}^2\right)^{\frac{1}{2}}}$$

The embedded relative constraints allow:

the continuity of position and velocity, between each segment

the jumps of the acceleration, between each segment

The embedded relative are unknowns that will be computed via

Solution of the Equations of Motions via TFC: Formulation

- A loss function for each segment *s* (*s* = 1, 2, 3) and each component *i* (*i* = 1, 2, 3) need to be defined
- For each loss function we need to take the partial derivative for each unknown
- By discretizing the each subdomain in *N* points we get:

onent *i (i =1, 2, 3)* need to be defined or each unknown

$$\begin{array}{cccc} N \times 3m) & \mathbf{0}_{(3N \times 6)} & \mathbf{0}_{(3N \times 3m)} & {}^{(1)}J_{\boldsymbol{\xi}\lambda} \\ P_{2} J_{\boldsymbol{\xi}} & {}^{(2)}J_{r_{2},v_{2}} & \mathbf{0}_{(3N \times 3m)} & {}^{(2)}J_{\boldsymbol{\xi}\lambda} \\ P_{2} J_{\boldsymbol{\xi}} & {}^{(3)}J_{r_{2},v_{2}} & {}^{(3)}J_{\boldsymbol{\xi}} & {}^{(3)}J_{\boldsymbol{\xi}\lambda} \end{array} \right]$$

 $(9N \times \{9m+18\})$

$$\mathbf{E}_k - (\mathbf{J}_k^{\mathrm{T}} \mathbf{J}_k)^{-1} \mathbf{J}_k^{\mathrm{T}} \mathbf{L}_k$$

Iterative least-square

Solution of the Equations of Motions via TFC: Results

Accuracy and convergence of TFC in solving the equations of motion are tested for a specific vehicle for Mars landing

> $v_{ex} = 2207.250$ [m/s], $T_{min} = 4500$ [N], and $T_{max} = 12000$ [N] Vehicle specifics

Variable	Initial	Final	Variable	Value
<i>r</i> [m]	$\{-500, -1000, 1500\}^{\mathrm{T}}$	$\left\{0, 0, 0\right\}^{\mathrm{T}}$	Points per segment (N)	100
v [m/s]	$\{120, -60, -60\}^{\mathrm{T}}$	$\left\{0, 0, 0\right\}^{\mathrm{T}}$	Number of basis functions per segment (m)	60
<i>m</i> [kg]	1905.00	-	Convergence criteria of loss function: $L_2[\mathbb{L}] < \epsilon$	10^{-12}

State boundary conditions

TFC parameters for the numerical test

Solution of the Equations of Motions via TFC: Results

(c) Time history of the acceleration.

(d) Propellant mass over trajectory.

Would improve with a better first guess for the coefficients

Iterations	10	
$L_2[\mathbb{L}]$	1.66×10^{-13}	

- Introduction
 - Overview
 - Goals
- Background
 - Optimal Control for Space Guidance
 - TFC approach to solving a TPBVP
- Optimal Powered Descent Pinpoint Landing Problem
- Solution of the Motion Equations via TFC
 Formulation
 - Results
- Conclusions and Outlooks

nding Problem FC

Conclusions and Outlooks

- TFC was successfully applied to solve the equations of motion for the fuel-efficient powered lacksquaredescent guidance
 - Machine error accuracy
 - Convergence achieved with only ten iterations
- Accurate trajectories, but still suboptimal as the condition for the free-time problem is not \bullet yet met
 - The switching times and the final time are suboptimal
 - The propellant used is not yet optimal
- Work in progress to develop the outer loop to find the optimal times that minimize the use of • propellant such that
 - $L_2[\mathbb{L}] < \epsilon$
 - $H(t_f)=0$

Thanks for the attention

