Accurate Solutions of the Radiative Transfer Problem via Theory of Connections

Mario De Florio ${ }^{1,2}$, Enrico Schiassi ${ }^{1}$, Roberto Furfaro ${ }^{1}$, Barry D. Ganapol ${ }^{1}$, Domiziano Mostacci ${ }^{2}$

${ }^{1}$ The University of Arizona, USA
${ }^{2}$ Università di Bologna, Italy
26 ${ }^{\text {th }}$ International Conference on Transport Theory
Sept 22-27, 2019, Paris, France

Contents

- Introduction
- Overview
- Goals
- Background
- Radiative Transfer for Remote sensing
- ToC approach to solve Linear ODEs
- Radiative Transfer Equation
- Solution of the RTE via ToC
- Formulation
- Results
- Conclusions and Outlooks

Contents

- Introduction
- Overview
- Goals
- Background
- Radiative Transfer for Remote sensing
- ToC approach to solve Linear ODEs
- Radiative Transfer Equation
- Solution of the RTE via ToC
- Formulation
- Results
- Conclusions and Outlooks

Introduction: Overview

- The Remote sensing is the processes of detecting and monitoring an object or an area by measuring its reflected and emitted radiation. It is widely used in the Planetary Geology to study surface properties of Planets and Asteroids

- The Transport Theory represents the theoretical underpinning of remote sensing. Radiative Transfer Equation (RTE) describes how radiation and matter interact based on the particle description of light

Introduction: Goals

- To solve the RTE using the recently developed Theory of Connections (ToC) [Mortari 2018]
- The focus of this talk is to show the capability of ToC in solving 1D Radiative Transfer Equation with high accuracy

Contents

- Introduction
- Overview
- Goals
- Background
- Radiative Transfer for Remote sensing
- ToC approach to solve Linear ODEs
- Radiative Transfer Equation
- Solution of the RTE via ToC
- Formulation
- Results
- Conclusions and Outlooks

Radiative Transfer for Remote Sensing

- Solving radiative transfer problems for remote sensing is generally hard and computationally expensive
- No direct analytical solutions except in very limited cases
- Solutions to radiative transfer problems for remote sensing generally are
- Semi-analytical
- High accuracy in limited cases
- Numerical
- Hard implementation

ToC approach to solve Linear ODES

- ToC derives expressions, called constrained expressions, with an embedded set of n linear constraints

$$
y(t)=g(t)+\sum_{k=1}^{n} \eta_{k} p_{k}(t)=g(t)+\boldsymbol{\eta}^{\boldsymbol{T}} \boldsymbol{p}(t)
$$

- According to the literature, the $g(t)$ used will be an expansion of orthogonal polynomials (Chebyshev)
- The solution of the problem is reduced to the calculation of the coefficients of the expansion of Chebyshev polynomials
- ToC has been used to solve several kind of problems, both linear and non-linear, in different areas
- Energy Optimal Landing Guidance - linear- [Furfaro and Mortari 2018];
- Fuel Efficient Landing Guidance - non linear- [Schiassi, Furfaro, et. Al 2019]
- Machine error accuracy in milliseconds

ToC approach to solve Linear ODEs

Application of the ToC for the solution of a linear ODE, with two constraints at two points:

$$
k_{2}(t) \ddot{y}(t)+k_{1}(t) \dot{y}(t)+k_{0}(t) y(t)=f(t) \quad \text { subject to: } \quad\left\{\begin{array}{l}
y\left(t_{0}\right)=y_{0} \\
y\left(t_{f}\right)=y_{f}
\end{array}\right.
$$

- Change of independent variable, to be able to use an expansion of orthogonal polynomials from $t \in\left[t_{0}, t_{f}\right]$ to $x \in\left[x_{0}, x_{f}\right]$, where $x_{0}=-1, x_{f}=1$.

The new variable x is defined as:

$$
x=c\left(t-t_{0}\right)+x_{0}
$$

Where c is the integration range ratio:

$$
c=\frac{x_{f}-x_{0}}{t_{f}-t_{0}}
$$

Due to the derivative chain rule, it follows that:

$$
y(t)=y(x) \quad \frac{d y}{d t}=\dot{y}=c \frac{d y}{d x}=c y^{\prime} \quad \frac{d^{2} y}{d t^{2}}=\ddot{y}=c^{2} \frac{d^{2} y}{d x^{2}}=c^{2} y^{\prime \prime}
$$

ToC approach to solve Linear ODEs

- Replacing in the equation we get:

$$
c^{2} k_{2} y^{\prime \prime}(x)+c k_{1} y^{\prime}(x)+k_{0} y(x)=f(x) \quad \text { subject to: } \quad\left\{\begin{array}{l}
y\left(x_{0}\right)=y_{0} \\
y\left(x_{f}\right)=y_{f}
\end{array}\right.
$$

- Constrained expressions

$$
\begin{aligned}
& y(x)=g(x)+\eta_{1} p(x)+\eta_{2} q(x) \\
& y^{\prime}(x)=g^{\prime}(x)+\eta_{1} p^{\prime}(x)+\eta_{2} q^{\prime}(x) \\
& y^{\prime \prime}(x)=g^{\prime \prime}(x)+\eta_{1} p^{\prime \prime}(x)+\eta_{2} q^{\prime \prime}(x)
\end{aligned}
$$

where:

$$
\begin{aligned}
g(x) & =\underline{h}^{T}(x) \underline{\xi} \\
g^{\prime}(x) & =\underline{h}^{\prime T}(x) \underline{\xi} \\
g^{\prime \prime}(x) & =\underline{h}^{\prime \prime T}(x) \underline{\xi}
\end{aligned}
$$

ToC approach to solve Linear ODEs

- Using the boundary conditions, we find η_{1}, η_{2}

$$
\left\{\begin{array}{l}
y_{0}=g_{0}+\eta_{1} p_{0}+\eta_{2} q_{0} \\
y_{f}=g_{f}+\eta_{1} p_{f}+\eta_{2} q_{f}
\end{array} \quad \rightarrow \quad\left[\begin{array}{ll}
p_{0} & q_{0} \\
p_{f} & q_{f}
\end{array}\right]\left[\begin{array}{l}
\eta_{1} \\
\eta_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{0}-g_{0} \\
y_{f}-g_{f}
\end{array}\right] \quad \Rightarrow\right.
$$

$$
\Rightarrow \quad \begin{aligned}
& \quad \eta_{1}=\frac{1}{\Delta}\left(q_{0} \underline{h}_{f}^{T}-q_{f} \underline{h}_{0}^{T}\right) \underline{\xi}+\frac{1}{\Delta}\left(q_{f} y_{0}-q_{0} y_{f}\right) \\
& \quad \eta_{2}=\frac{1}{\Delta}\left(p_{0} \underline{h}_{f}^{T}+p_{f} \underline{h}_{0}^{T}\right) \underline{\xi}+\frac{1}{\Delta}\left(p_{0} y_{f}-p_{f} y_{0}\right)
\end{aligned}
$$

$$
\text { where: } \quad \Delta=p_{0} q_{f}-q_{0} p_{f} \neq 0
$$

ToC approach to solve Linear ODEs

- By replacing the newly found values of η_{1}, η_{2} in the constrained expressions, we get:

$$
\begin{gathered}
y(x)=\left[\underline{h}^{T}(x)+\frac{p(x)}{\Delta}\left(q_{0} \underline{h}_{f}^{T}-q_{f} \underline{h}_{0}^{T}\right)+\frac{q(x)}{\Delta}\left(q_{f} \underline{h}_{0}^{T}-p_{0} \underline{h}_{f}^{T}\right)\right] \underline{\xi}+\left[\frac{p(x)}{\Delta}\left(q_{f} y_{0}-q_{0} y_{f}\right)+\frac{q(x)}{\Delta}\left(p_{0} y_{f}-p_{f} y_{0}\right)\right] \\
y^{\prime}(x)=\left[\underline{h}^{\prime T}(x)+\frac{p^{\prime}(x)}{\Delta}\left(q_{0} \underline{h}_{f}^{T}-q_{f} \underline{h}_{0}^{T}\right)+\frac{q^{\prime}(x)}{\Delta}\left(q_{f} \underline{h}_{0}^{T}-p_{0} \underline{h}_{f}^{T}\right)\right] \underline{\xi}+\left[\frac{p^{\prime}(x)}{\Delta}\left(q_{f} y_{0}-q_{0} y_{f}\right)+\frac{q^{\prime}(x)}{\Delta}\left(p_{0} y_{f}-p_{f} y_{0}\right)\right] \\
y^{\prime \prime}(x)=\left[\underline{h}^{\prime \prime}(x)+\frac{p^{\prime \prime}(x)}{\Delta}\left(q_{0} \underline{h}_{f}^{T}-q_{f} \underline{h}_{0}^{T}\right)+\frac{q^{\prime \prime}(x)}{\Delta}\left(q_{f} \underline{h}_{0}^{T}-p_{0} \underline{h}_{f}^{T}\right)\right] \underline{\xi}+\left[\frac{p^{\prime \prime}(x)}{\Delta}\left(q_{f} y_{0}-q_{0} y_{f}\right)+\frac{q^{\prime \prime}(x)}{\Delta}\left(p_{0} y_{f}-p_{f} y_{0}\right)\right]
\end{gathered}
$$

We define the following parameters:

$$
\begin{aligned}
\underline{a a}=\frac{\left(q_{0} \underline{h}_{f}^{T}-q_{f} \underline{h}_{0}^{T}\right)}{\Delta} & \underline{b b}=\frac{\left(q_{f} \underline{h}_{0}^{T}-p_{0} \underline{h}_{f}^{T}\right)}{\Delta} \\
c c=\frac{\left(q_{f} y_{0}-q_{0} y_{f}\right)}{\Delta} & d d=\frac{\left(p_{0} y_{f}-p_{f} y_{0}\right)}{\Delta}
\end{aligned}
$$

ToC approach to solve Linear ODEs

Then:

$$
\begin{gathered}
y(x)=\left[\underline{h}^{T}(x)+p(x) \underline{a a}+q(x) \underline{b b}\right] \underline{\xi}+[p(x) c c+q(x) d d] \\
y^{\prime}(x)=\left[\underline{h}^{\prime T}(x)+p^{\prime}(x) \underline{a a}+q^{\prime}(x) \underline{b b}\right] \underline{\xi}+\left[p^{\prime}(x) c c+q^{\prime}(x) d d\right] \\
y^{\prime \prime}(x)=\left[\underline{h}^{\prime \prime}(x)+p^{\prime \prime}(x) \underline{a a}+q^{\prime \prime}(x) \underline{b b}\right] \underline{\xi}+\left[p^{\prime \prime}(x) c c+q^{\prime \prime}(x) d d\right]
\end{gathered}
$$

- By plugging into:

$$
c^{2} k_{2} y^{\prime \prime}(x)+c k_{1} y^{\prime}(x)+k_{0} y(x)=f(x)
$$

we obtain the equation with the following form:

$$
\begin{aligned}
& c^{2} k_{2}\left\{\left[\underline{h}^{\prime \prime T}(x)+p^{\prime \prime}(x) \underline{a a}+q^{\prime \prime}(x) \underline{b b}\right] \underline{\xi}+\left[p^{\prime \prime}(x) c c+q^{\prime \prime}(x) d d\right]\right\}+ \\
& c k_{1}\left\{\left[\underline{h}^{\prime T}(x)+p^{\prime}(x) \underline{a a}+q^{\prime}(x) \underline{b b}\right] \underline{\xi}+\left[p^{\prime}(x) c c+q^{\prime}(x) d d\right]\right\}+ \\
& k_{0}\left\{\left[\underline{h}^{\prime \prime}(x)+p^{\prime \prime}(x) \underline{a a}+q^{\prime \prime}(x) \underline{b b}\right] \underline{\xi}+\left[p^{\prime \prime}(x) c c+q^{\prime \prime}(x) d d\right]\right\}=f(x)
\end{aligned}
$$

ToC approach to solve Linear ODEs

By rearranging the terms of the equation just obtained, the solution of the initial ODE is reduced to the solution of a Linear System

$$
A \underline{\xi}=\underline{b}
$$

$$
\left\{A_{i j}\right\}=\left(c^{2} k_{2} h_{i j}^{\prime \prime}+c k_{1} h_{i j}^{\prime}+k_{0} h_{i j}\right)+\left(c^{2} k_{2} p_{i}^{\prime \prime}+c k_{1} p_{i}^{\prime}+k_{0} p_{i}\right) a a_{j}+\left(c^{2} k_{2} q_{i}^{\prime \prime}+c k_{1} q_{i}^{\prime}+k_{0} q_{i}\right) b b_{j}
$$

$$
\left\{b_{i}\right\}=f_{i}-\left(c^{2} k_{2} p_{i}^{\prime \prime}+c k_{1} p_{i}^{\prime}+k_{0} p_{i}\right) c c-\left(c^{2} k_{2} q_{i}^{\prime \prime}+c k_{1} q_{i}^{\prime}+k_{0} q_{i}\right) d d
$$

- Once we get $\underline{\xi}$ by a Least-Squares, it is replaced in the constrained expressions shown previously:

$$
\begin{aligned}
& y(x)=\underline{h}^{T}(x) \underline{\xi}+\eta_{1} p(x)+\eta_{2} q(x) \\
& y^{\prime}(x)=\underline{h}^{\prime T}(x) \underline{\xi}+\eta_{1} p^{\prime}(x)+\eta_{2} q^{\prime}(x) \\
& y^{\prime \prime}(x)=\underline{h}^{\prime \prime T}(x) \underline{\xi}+\eta_{1} p^{\prime \prime}(x)+\eta_{2} q^{\prime \prime}(x)
\end{aligned}
$$

ToC approach to solve Linear ODEs

- We can now reconstruct the solution of the initial equation as a function of t :

$$
y(t)=y(x) \quad \dot{y}(t)=c y^{\prime}(x) \quad \ddot{y}(t)=c^{2} y^{\prime \prime}(x)
$$

- Finally, by calculating the residuals, we can check the precision of the equation:

$$
\operatorname{Res}=k_{2} \ddot{y}(t)+\mathrm{k}_{1} \dot{y}(t)+k_{0} y(t)-f(t)
$$

$$
\text { PRECISION OF THE EQUATION } \propto \frac{1}{R e s}
$$

Contents

- Introduction
- Overview
- Goals
- Background
- Radiative Transfer for Remote sensing
- ToC approach to solve Linear ODEs
- Radiative Transfer Equation
- Solution of the RTE via ToC
- Formulation
- Results
- Conclusions and Outlooks

Radiative Transfer Equation

Basic Formulation of the Radiative Transfer Problem

The Radiative Transfer Equation RTE (according to Chandrasekhar) to be solved is:

$$
\mu \frac{\partial}{\partial t} I(\tau, \mu, \phi)+I(\tau, \mu, \phi)=\frac{\omega}{4 \pi} \int_{-1}^{1} \int_{0}^{2 \pi} p(\cos \Theta) I\left(\tau, \mu^{\prime}, \phi^{\prime}\right) d \phi^{\prime} d \mu^{\prime}
$$

With the following constraints:
$\begin{cases}I(0, \mu, \phi)=\pi \delta\left(\mu-\mu_{0}\right) \delta\left(\phi-\phi_{0}\right) & \text { for } \mu>0 \\ I(\Delta, \mu, \phi)=0 & \text { for } \mu<0\end{cases}$

Radiative Transfer Equation

- Separation of the Intensity into uncollided fraction and collided fraction (or diffused)
- Making use of the Addition Theorem of the Spherical Harmonics to express the phase function:

$$
p(\cos \Theta)=\sum_{m=0}^{L}\left(2-\delta_{0, m}\right) \sum_{l=m}^{L} \beta_{l} P_{l}^{m}\left(\mu^{\prime}\right) P_{l}^{m}(\mu) \cos \left[m\left(\phi^{\prime}-\phi\right)\right]
$$

- Expression of the diffused fraction by Fourier series (Siewert 1998):

$$
I^{*}(\tau, \mu, \phi)=\frac{1}{2} \sum_{m=0}^{L}\left(2-\delta_{0, m}\right) I_{m}(\tau, \mu) \cos \left[m\left(\phi^{\prime}-\phi\right)\right]
$$

where the m-th Fourier component satisfies the equation of transfer

$$
\mu \frac{\partial}{\partial \tau} I_{m}(\tau, \mu)+I_{m}(\tau, \mu)=\frac{\omega}{2} \sum_{l=m}^{L} \beta_{l} P_{l}^{m}(\mu) \int_{-1}^{1} P_{l}^{m}\left(\mu^{\prime}\right) I_{m}\left(\tau, \mu^{\prime}\right) d \mu^{\prime}+\frac{\omega}{2} e^{-\tau / \mu_{0}} \sum_{l=m}^{L} \beta_{l} P_{l}^{m}\left(\mu_{0}\right) P_{l}^{m}\left(\mu_{i}\right)
$$

- Discretization of $\mu \rightarrow \mu_{i}$ where $i=1, \ldots, N$

Radiative Transfer Equation

- Change of variable: from τ to X
- Splitting of the equation in forward flux and backward flux.
- Gauss-Legendre quadrature for calculating the integral in the range [0,1].

$$
\begin{gathered}
c \mu_{i} \frac{\partial}{\partial x} I_{m}^{+}+I_{m}^{+}=\frac{\omega}{2} \sum_{l=m}^{L} \beta_{l} P_{l}^{m}\left(\mu_{i}\right) \sum_{k=1}^{N} w_{k} P_{l}^{m}\left(\mu_{k}\right)\left[I_{m}^{+}+(-1)^{l-m} I_{m}^{-}\right]+\frac{\omega}{2} e^{-\tau / \mu_{0}} \sum_{l=m}^{L} \beta_{l} P_{l}^{m}\left(\mu_{0}\right) P_{l}^{m}\left(\mu_{i}\right) \\
-c \mu_{i} \frac{\partial}{\partial x} I_{m}^{-}+I_{m}^{-}=\frac{\omega}{2} \sum_{l=m}^{L} \beta_{l} P_{l}^{m}\left(-\mu_{i}\right) \sum_{k=1}^{N} w_{k} P_{l}^{m}\left(-\mu_{k}\right)\left[(-1)^{l-m} I_{m}^{+}+I_{m}^{-}\right]+\frac{\omega}{2} e^{-\tau / \mu_{0}} \sum_{l=m}^{L} \beta_{l} P_{l}^{m}\left(\mu_{0}\right) P_{l}^{m}\left(-\mu_{i}\right)
\end{gathered}
$$

with following boundary conditions:

$$
I_{m}^{+}(0)=0 \quad I_{m}^{-}(\Delta)=0
$$

Contents

- Introduction
- Overview
- Goals
- Background
- Radiative Transfer for Remote sensing
- ToC approach to solve Linear ODEs
- Radiative Transfer Equation
- Solution of the RTE via ToC
- Formulation
- Results
- Conclusions and Outlooks

Solution of the RTE via ToC: Formulation

Formulation via ToC

- Constrained expressions:

$$
\begin{align*}
I_{m}^{+}(x)= & g^{+}(x)+\eta^{+} p(x) \\
& I_{m}^{-}(x)=g^{-}(x)+\eta^{-} q(x)
\end{align*}
$$

$$
\begin{aligned}
& I_{m}^{+}(x)=g^{+}(x)+\eta^{+} \\
& \quad I_{m}(x)^{-}=g^{-}(x)+\eta^{-}
\end{aligned}
$$

- Use of boundary conditions to find the coefficients η :

$$
\begin{aligned}
& I_{0}^{+}=0=g_{0}+\eta^{+} \\
& \quad I_{0}^{-}=0=g_{0}+\eta^{-}
\end{aligned}
$$

$$
\begin{aligned}
& \eta^{+}=-g_{0} \\
& \quad \eta^{-}=-g_{f}
\end{aligned}
$$

- Replacement of η in the constrained expressions:

$$
I_{m}^{+}(x)=g^{+}(x)-g_{0}
$$

$$
I_{m}^{-}(x)=g^{-}(x)-g_{f}
$$

- Finally, we get the solutions in the following forms:

$$
I_{m}^{+}=\left(\boldsymbol{h}^{T}-\boldsymbol{h}_{\mathbf{0}}^{T}\right) \cdot \xi^{+}
$$

$$
I_{m}^{-}=\left(\boldsymbol{h}^{T}-\boldsymbol{h}_{f}^{T}\right) \cdot \xi^{-}
$$

Solution of the RTE via ToC: Formulation

- Replacement of the constrained expressions in the two DEs

$$
\begin{gathered}
\left(c \mu_{i} \boldsymbol{h}^{\prime}+\boldsymbol{h}-\boldsymbol{h}_{\mathbf{0}}\right) \cdot \xi_{\boldsymbol{i}}^{+}-\frac{\omega}{2} \sum_{l=m}^{L} \beta_{l} P_{l}^{m}\left(\mu_{i}\right) \sum_{k=1}^{N} w_{k} P_{l}^{m}\left(\mu_{k}\right)\left(\boldsymbol{h}-\boldsymbol{h}_{\mathbf{0}}\right) \cdot \xi_{\boldsymbol{k}}^{+} \\
-\frac{\omega}{2} \sum_{l=m}^{L} \beta_{l} P_{l}^{m}\left(\mu_{i}\right) \sum_{k=1}^{N} w_{k} P_{l}^{m}\left(\mu_{k}\right)(-1)^{l-m}\left(\boldsymbol{h}-\boldsymbol{h}_{\boldsymbol{f}}\right) \cdot \xi_{\boldsymbol{k}}^{-}=\frac{\omega}{2} e^{-\tau / \mu_{0}} \sum_{l=m}^{L} \beta_{l} P_{l}^{m}\left(\mu_{0}\right) P_{l}^{m}\left(\mu_{i}\right) \\
\left(-c \mu_{i} \boldsymbol{h}^{\prime}+\boldsymbol{h}-\boldsymbol{h}_{\boldsymbol{f}}\right) \cdot \xi_{\boldsymbol{i}}^{-}-\frac{\omega}{2} \sum_{l=m}^{L} \beta_{l} P_{l}^{m}\left(-\mu_{i}\right) \sum_{k=1}^{N} w_{k} P_{l}^{m}\left(-\mu_{k}\right)\left(\boldsymbol{h}-\boldsymbol{h}_{\boldsymbol{f}}\right) \cdot \boldsymbol{\xi}_{\boldsymbol{k}}^{-} \\
-\frac{\omega}{2} \sum_{l=m}^{L} \beta_{l} P_{l}^{m}\left(-\mu_{i}\right) \sum_{k=1}^{N} w_{k} P_{l}^{m}\left(-\mu_{k}\right)(-1)^{l-m}\left(\boldsymbol{h}-\boldsymbol{h}_{\mathbf{0}}\right) \cdot \xi_{\boldsymbol{k}}^{+}=\frac{\omega}{2} e^{-\tau / \mu_{0}} \sum_{l=m}^{L} \beta_{l} P_{l}^{m}\left(\mu_{0}\right) P_{l}^{m}\left(-\mu_{i}\right)
\end{gathered}
$$

- Computation of the coefficients ξ by solving the system $\boldsymbol{A} \cdot \boldsymbol{\xi}=\boldsymbol{b}$
of dimensions: $\quad(2 M N \times 2 m N) \cdot(2 m N \times 1)=(2 M N \times 1)$
$M=$ spatial discretization points
$N=$ angle discretization points
$m=$ number of polynomials

Solution of the RTE via ToC: Formulation

THE UNIVERSITY OF ARIZONA
Research, Discovery \& Innovation

$$
\begin{aligned}
& k=1 \quad k=2 \quad k=3 \quad \cdots \quad \cdots \quad k=N
\end{aligned}
$$

where:

$$
\begin{array}{cc}
\square_{i}=c \mu_{i} \boldsymbol{h}^{\prime}+\boldsymbol{h}-\boldsymbol{h}_{\mathbf{0}} & \boldsymbol{o}_{i}=-c \mu_{i} \boldsymbol{h}^{\prime}+\boldsymbol{h}-\boldsymbol{h}_{\boldsymbol{f}} \\
\varpi_{i}^{k}=-\frac{\omega}{2} w_{k}\left(\boldsymbol{h}-\boldsymbol{h}_{\mathbf{0}}\right) \sum_{l=m}^{L} \beta_{l} P_{l}\left(\mu_{i}\right) P_{l}\left(\mu_{k}\right) ; & \boldsymbol{\rho}_{i}^{k}=-\frac{\omega}{2} w_{k}\left(\boldsymbol{h}-\boldsymbol{h}_{\boldsymbol{f}}\right) \sum_{l=m}^{L} \beta_{l} P_{l}\left(\mu_{i}\right) P_{l}\left(\mu_{k}\right)(-1)^{l-m} \\
\boldsymbol{\varsigma}_{i}^{k}=-\frac{\omega}{2} w_{k}\left(\boldsymbol{h}-\boldsymbol{h}_{\mathbf{0}}\right) \sum_{l=m}^{L} \beta_{l} P_{l}\left(-\mu_{i}\right) P_{l}\left(-\mu_{k}\right)(-1)^{l-m} ; & \boldsymbol{o}_{i}^{k}=-\frac{\omega}{2} w_{k}\left(\boldsymbol{h}-\boldsymbol{h}_{\boldsymbol{f}}\right) \sum_{l=m}^{L} \beta_{l} P_{l}\left(-\mu_{i}\right) P_{l}\left(-\mu_{k}\right)
\end{array}
$$

Solution of the RTE via ToC: Formulation

- Substitution of ξ coefficients in the constrained expressions

$$
I_{m}^{+}=\left(h-h_{0}\right) \cdot \xi^{+} \quad \boldsymbol{I}_{\boldsymbol{m}}^{-}=\left(\boldsymbol{h}-\boldsymbol{h}_{\boldsymbol{f}}\right) \cdot \xi^{-}
$$

- Substitution of the m-th Fourier series component:

$$
I_{*}^{+}(\tau, \mu, \phi)=\frac{1}{2} \sum_{m=0}^{L}\left(2-\delta_{0, m}\right) I_{m}^{+}(\tau, \boldsymbol{\mu}) \cos \left[m\left(\phi^{\prime}-\phi\right)\right] \quad \quad I_{*}^{-}(\tau, \mu, \phi)=\frac{1}{2} \sum_{m=0}^{L}\left(2-\delta_{0, m}\right) \boldsymbol{I}_{m}^{-}(\boldsymbol{\tau}, \boldsymbol{\mu}) \cos \left[m\left(\phi^{\prime}-\phi\right)\right]
$$

- Post-processing, to find solutions at every polar angle, and at any slab's point (via ToC)

$$
\begin{gathered}
\left(c \gamma_{j} \boldsymbol{h}^{\prime}+\boldsymbol{h}-\boldsymbol{h}_{0}\right) \cdot \zeta_{j}^{+}=\frac{\omega}{2} \sum_{l=m}^{L} \beta_{l} P_{l}^{m}\left(\gamma_{j}\right) \sum_{k=1}^{N} w_{k} P_{l}^{m}\left(\mu_{k}\right)\left[\left(\boldsymbol{h}-\boldsymbol{h}_{0}\right) \cdot \xi_{k}^{+}+(-1)^{l-m}\left(\boldsymbol{h}-\boldsymbol{h}_{\boldsymbol{f}}\right) \cdot \xi_{k}^{-}\right]+b_{j}^{+} \\
\left(-c \gamma_{j} \boldsymbol{h}^{\prime}+\boldsymbol{h}-\boldsymbol{h}_{\boldsymbol{f}}\right) \cdot \zeta_{\boldsymbol{j}}^{-}=\frac{\omega}{2} \sum_{l=m}^{L} \beta_{l} P_{l}^{m}\left(-\gamma_{j}\right) \sum_{k=1}^{N} w_{k} P_{l}^{m}\left(-\mu_{k}\right)\left[(-1)^{l-m}\left(\boldsymbol{h}-\boldsymbol{h}_{\mathbf{0}}\right) \cdot \xi_{k}^{+}+\left(\boldsymbol{h}-\boldsymbol{h}_{\boldsymbol{f}}\right) \cdot \xi_{k}^{-}\right]+b_{j}^{-}
\end{gathered}
$$

The new arbitrary angles are γ_{j} and the new unknown vector is ζ_{j}^{\ddagger}, computed by a Least-Squares method.

Solution of the RTE via Toc: Results

-The accuracy of this new method for the RTE solution was validated by comparing the results with the benchmarks published by C.E. Siewert et. al, for the following case studies:

- Isotropic, Two-Stream Approximation;
- Isotropic, Multi-stream;
- Anisotropic, Mie Scattering;
- Anisotropic, Haze L Problem.
- For all the cases considered, we obtained the same digits published by Garcia \& Siewert (1986)

Solution of the RTE via ToC:
 Results

Haze L Problem

for $m=0$ Fourier component (normal incident beam and conservative case)

$$
\begin{gathered}
\omega=1 \\
\mu_{0}=1 \\
\Delta=1
\end{gathered}
$$

RTE via ToC		RTE via ADO
$\mathrm{N}=30$	VS.	$\mathrm{N}=100 \div 150$

- CPU time for the Least-Squares $\cong 8,5$ seconds
- Total CPU time to run the code (including matrices construction, plots and postprocessing) $\cong 25$ seconds

Table 11: Haze L Problem - The Intensity $I_{*}(\tau, \mu)$ for the Haze L phase function with $\omega=1$ and $\mu_{0}=1$.

$\boldsymbol{\mu}$	$\boldsymbol{\tau}=\mathbf{0}$	$\boldsymbol{\tau}=\mathbf{0 . 0 5 \Delta}$	$\boldsymbol{\tau}=\mathbf{0 . 1 \boldsymbol { \Delta }}$	$\boldsymbol{\tau}=\mathbf{0 . 2 \boldsymbol { \Delta }}$	$\boldsymbol{\tau}=\mathbf{0 . 5 \boldsymbol { \Delta }}$	$\boldsymbol{\tau}=\mathbf{0 . 7 5 \boldsymbol { \Delta }}$	$\boldsymbol{\tau}=\boldsymbol{\Delta}$
-1.0	$3.61452 \mathrm{e}-2$	$3.43394 \mathrm{e}-2$	$3.25109 \mathrm{e}-2$	$2.88122 \mathrm{e}-2$	$1.76286 \mathrm{e}-2$	$8.52589 \mathrm{e}-3$	$\mathbf{0}$
-0.9	$3.97819 \mathrm{e}-2$	$3.78723 \mathrm{e}-2$	$3.59207 \mathrm{e}-2$	$3.19303 \mathrm{e}-2$	$1.96202 \mathrm{e}-2$	$9.45731 \mathrm{e}-3$	$\mathbf{0}$
-0.8	$4.27313 \mathrm{e}-2$	$4.08406 \mathrm{e}-2$	$3.88734 \mathrm{e}-2$	$3.47677 \mathrm{e}-2$	$2.16019 \mathrm{e}-2$	$1.03959 \mathrm{e}-2$	$\mathbf{0}$
-0.7	$4.80051 \mathrm{e}-2$	$4.61319 \mathrm{e}-2$	$4.41307 \mathrm{e}-2$	$3.98292 \mathrm{e}-2$	$2.52479 \mathrm{e}-2$	$1.22171 \mathrm{e}-2$	$\mathbf{0}$
-0.6	$5.58214 \mathrm{e}-2$	$5.40432 \mathrm{e}-2$	$5.20594 \mathrm{e}-2$	$4.75986 \mathrm{e}-2$	$3.11837 \mathrm{e}-2$	$1.53618 \mathrm{e}-2$	$\mathbf{0}$
-0.5	$6.60942 \mathrm{e}-2$	$6.46296 \mathrm{e}-2$	$6.28449 \mathrm{e}-2$	$5.84971 \mathrm{e}-2$	$4.02740 \mathrm{e}-2$	$2.05621 \mathrm{e}-2$	$\mathbf{0}$
-0.4	$7.81481 \mathrm{e}-2$	$7.74403 \mathrm{e}-2$	$7.62508 \mathrm{e}-2$	$7.27049 \mathrm{e}-2$	$5.37300 \mathrm{e}-2$	$2.91285 \mathrm{e}-2$	$\mathbf{0}$
-0.3	$8.99682 \mathrm{e}-2$	$9.07706 \mathrm{e}-2$	$9.08784 \mathrm{e}-2$	$8.94711 \mathrm{e}-2$	$7.29643 \mathrm{e}-2$	$4.34688 \mathrm{e}-2$	$\mathbf{0}$
-0.2	$9.70815 \mathrm{e}-2$	$1.00421 \mathrm{e}-1$	$1.02789 \mathrm{e}-1$	$1.05506 \mathrm{e}-1$	$9.83777 \mathrm{e}-2$	$6.79949 \mathrm{e}-2$	$\mathbf{0}$
-0.1	$9.29328 \mathrm{e}-2$	$9.98187 \mathrm{e}-2$	$1.05195 \mathrm{e}-1$	$1.13497 \mathrm{e}-1$	$1.24037 \mathrm{e}-1$	$1.08399 \mathrm{e}-2$	$\mathbf{0}$
-0.0	$6.98774 \mathrm{e}-2$	$8.46673 \mathrm{e}-2$	$9.41663 \mathrm{e}-1$	$1.08727 \mathrm{e}-1$	$1.35762 \mathrm{e}-1$	$1.42779 \mathrm{e}-1$	$\mathbf{0}$
0.0	$\mathbf{0}$	$8.46673 \mathrm{e}-2$	$9.41663 \mathrm{e}-1$	$1.08727 \mathrm{e}-1$	$1.35762 \mathrm{e}-1$	$1.42779 \mathrm{e}-1$	$1.14808 \mathrm{e}-1$
0.1	$\mathbf{0}$	$2.95418 \mathrm{e}-2$	$5.24346 \mathrm{e}-2$	$8.45649 \mathrm{e}-2$	$1.35096 \mathrm{e}-1$	$1.56106 \mathrm{e}-1$	$1.56976-1$
0.2	$\mathbf{0}$	$1.64907 \mathrm{e}-2$	$3.22817 \mathrm{e}-2$	$6.07527 \mathrm{e}-2$	$1.24350 \mathrm{e}-1$	$1.58925 \mathrm{e}-1$	$1.76818 \mathrm{e}-1$
0.3	$\mathbf{0}$	$1.23421 \mathrm{e}-2$	$2.48488 \mathrm{e}-2$	$4.93968 \mathrm{e}-2$	$1.14811 \mathrm{e}-1$	$1.57937 \mathrm{e}-1$	$1.88301 \mathrm{e}-1$
0.4	$\mathbf{0}$	$1.11879 \mathrm{e}-2$	$2.26450 \mathrm{e}-2$	$4.57547 \mathrm{e}-2$	$1.12269 \mathrm{e}-1$	$1.60862 \mathrm{e}-1$	$2.00019 \mathrm{e}-1$
0.5	$\mathbf{0}$	$1.17959 \mathrm{e}-2$	$2.37910 \mathrm{e}-2$	$4.80003 \mathrm{e}-2$	$1.19079 \mathrm{e}-1$	$1.73191 \mathrm{e}-1$	$2.19633 \mathrm{e}-1$
0.6	$\mathbf{0}$	$1.42049 \mathrm{e}-2$	$2.84584 \mathrm{e}-2$	$5.68731 \mathrm{e}-2$	$1.39051 \mathrm{e}-1$	$2.01445 \mathrm{e}-1$	$2.55983 \mathrm{e}-1$
0.7	$\mathbf{0}$	$1.95833 \mathrm{e}-2$	$3.89248 \mathrm{e}-2$	$7.67454 \mathrm{e}-2$	$1.82004 \mathrm{e}-1$	$2.58986 \mathrm{e}-1$	$3.25125 \mathrm{e}-1$
0.8	$\mathbf{0}$	$3.19532 \mathrm{e}-2$	$6.29430 \mathrm{e}-2$	$1.22045 \mathrm{e}-1$	$2.77182 \mathrm{e}-1$	$3.82767 \mathrm{e}-1$	$4.68658 \mathrm{e}-1$
0.9	$\mathbf{0}$	$6.87267 \mathrm{e}-2$	$1.33917 \mathrm{e}-1$	$2.54259 \mathrm{e}-1$	$5.44601 \mathrm{e}-1$	$7.19447 \mathrm{e}-1$	$8.46084 \mathrm{e}-1$
1.0	$\mathbf{0}$	$3.64940 \mathrm{e}-1$	$7.00266 \mathrm{e}-1$	1.28955	2.52255	3.09319	3.38091

Solution of the RTE via ToC:
 Results

Haze L Problem

 for $83 m$ Fourier components$$
\begin{gathered}
\omega=0.9 \\
\mu_{0}=0.5 \\
\Delta=1 \\
\phi-\phi_{0}=\pi / 2
\end{gathered}
$$

RTE via ToC
$\mathrm{N}=30$$\quad$ VS. \quad RTE via ADO

- CPU time per Least-Squares for each $m \cong 8,5$ seconds
- Total CPU time for any Least-Squares $\cong 11,7$ minutes
- Total CPU time to run the code (including matrices construction, plots and postprocessing) $\cong 25$ minutes

Table 13: Haze L Problem - The Intensity $I_{*}(\tau, \mu, \phi)$ for the Haze L phase function with $\omega=0.9, \mu_{0}=0.5$, and $\phi-\phi_{0}=\pi / 2$.

μ	$\tau=0$	$\boldsymbol{\tau}=0.05 \Delta$	$\boldsymbol{\tau}=\mathbf{0 . 1 \Delta}$	$\boldsymbol{\tau}=0.2 \Delta$	$\boldsymbol{\tau}=0.5 \Delta$	$\tau=0.75 \Delta$	$\tau=\Delta$
-1.0	$2.28190 \mathrm{e}-2$	$2.14170 \mathrm{e}-2$	$1.99920 \mathrm{e}-2$	$1.71574 \mathrm{e}-2$	$9.34719 \mathrm{e}-3$	$4.02513 \mathrm{e}-3$	0
-0.9	$2.69861 \mathrm{e}-2$	$2.54001 \mathrm{e}-2$	$2.3770 \mathrm{e}-2$	$2.04885 \mathrm{e}-2$	$1.12507 \mathrm{e}-2$	$4.83998 \mathrm{e}-3$	0
-0.8	$3.23251 \mathrm{e}-2$	$3.05433 \mathrm{e}-2$	$2.86841 \mathrm{e}-2$	$2.48816 \mathrm{e}-2$	1.38576e-2	5.98687e-3	0
-0.7	$3.90915 \mathrm{e}-2$	$3.71288 \mathrm{e}-2$	$3.50364 \mathrm{e}-2$	$3.06624 \mathrm{e}-2$	$1.74617 \mathrm{e}-2$	7.63435e-3	0
-0.6	$4.75194 \mathrm{e}-2$	$4.54446 \mathrm{e}-2$	$4.31587 \mathrm{e}-2$	$3.82274 \mathrm{e}-2$	$2.24929 \mathrm{e}-2$	$1.00585 \mathrm{e}-2$	0
-0.5	$5.76960 \mathrm{e}-2$	$5.56800 \mathrm{e}-2$	$5.33274 \mathrm{e}-2$	$4.79966 \mathrm{e}-2$	2.95696e-2	$1.37243 \mathrm{e}-2$	0
-0.4	$6.92921 \mathrm{e}-2$	$6.76843 \mathrm{e}-2$	$6.55506 \mathrm{e}-2$	6.02592e-2	$3.95485 \mathrm{e}-2$	$1.94423 \mathrm{e}-2$	0
-0.3	$8.09723 \mathrm{e}-2$	$8.04082 \mathrm{e}-2$	$7.90373 \mathrm{e}-2$	$7.47154 \mathrm{e}-2$	$5.34553 \mathrm{e}-2$	2.86762e-2	0
-0.2	$8.94088 \mathrm{e}-2$	$9.08993 \mathrm{e}-2$	$9.11597 \mathrm{e}-2$	$8.93864 \mathrm{e}-2$	$7.18225 \mathrm{e}-2$	$4.41114 \mathrm{e}-2$	0
-0.1	$8.86327 \mathrm{e}-2$	$9.36078 \mathrm{e}-2$	$9.65669 \mathrm{e}-2$	$9.91642 \mathrm{e}-2$	$9.15413 \mathrm{e}-2$	$6.94491 \mathrm{e}-2$	0
-0.0	$6.76014 \mathrm{e}-2$	$8.16018 \mathrm{e}-2$	$8.92220 \mathrm{e}-2$	$9.83762 \mathrm{e}-2$	$1.03484 \mathrm{e}-1$	$9.32369 \mathrm{e}-2$	0
0.0	0	$8.16018 \mathrm{e}-2$	$8.92220 \mathrm{e}-2$	$9.83762 \mathrm{e}-2$	$1.03484 \mathrm{e}-1$	$9.32371 \mathrm{e}-2$	$6.29164 \mathrm{e}-2$
0.1	0	$2.74475 \mathrm{e}-2$	$4.83619 \mathrm{e}-2$	$7.57571 \mathrm{e}-2$	$1.04622 \mathrm{e}-1$	$1.04387 \mathrm{e}-1$	$8.95907 \mathrm{e}-2$
0.2	0	$1.41330 \mathrm{e}-2$	$2.75945 \mathrm{e}-2$	$5.09061 \mathrm{e}-2$	$9.28868 \mathrm{e}-2$	$1.04678 \mathrm{e}-1$	$1.01178 \mathrm{e}-1$
0.3	0	$9.26644 \mathrm{e}-3$	$1.87294 \mathrm{e}-2$	$3.68737 \mathrm{e}-2$	$7.85470 \mathrm{e}-2$	$9.74004 \mathrm{e}-2$	$1.02990 \mathrm{e}-1$
0.4	0	$6.96644 \mathrm{e}-3$	$1.42411 \mathrm{e}-2$	$2.88244 \mathrm{e}-2$	$6.68034 \mathrm{e}-2$	8.82947e-2	$9.95180 \mathrm{e}-2$
0.5	0	$5.75720 \mathrm{e}-3$	$1.17847 \mathrm{e}-2$	$2.40718 \mathrm{e}-2$	$5.82338 \mathrm{e}-2$	$8.01154 \mathrm{e}-2$	$9.43192 \mathrm{e}-2$
0.6	0	$5.11030 \mathrm{e}-3$	$1.04251 \mathrm{e}-2$	$2.12819 \mathrm{e}-2$	5.23831e-2	$7.37544 \mathrm{e}-2$	$8.93298 \mathrm{e}-2$
0.7	0	$4.79703 \mathrm{e}-3$	$9.73440 \mathrm{e}-3$	$1.97631 \mathrm{e}-2$	4.87196e-2	6.93677e-2	$8.54626 \mathrm{e}-2$
0.8	0	$4.71115 \mathrm{e}-3$	$9.50506 \mathrm{e}-3$	$1.91501 \mathrm{e}-2$	4.68396e-2	6.68825e-2	$8.31200 \mathrm{e}-2$
0.9	0	$4.80640 \mathrm{e}-3$	$9.64244 \mathrm{e}-3$	$1.92635 \mathrm{e}-2$	$4.64998 \mathrm{e}-2$	$6.62130 \mathrm{e}-2$	$8.24990 \mathrm{e}-2$
1.0	0	$5.07113 \mathrm{e}-3$	$1.01191 \mathrm{e}-2$	$2.00435 \mathrm{e}-2$	$4.76083 \mathrm{e}-2$	6.73492e-2	$8.37579 \mathrm{e}-2$

Contents

- Introduction
- Overview
- Goals
- Background
- Radiative Transfer for Remote sensing
- ToC approach to solve Linear ODEs
- Radiative Transfer Equation
- Solution of the RTE via ToC
- Formulation
- Results
- Conclusions and Outlooks

Conclusions and Outlooks

- The RTE is solved via the recently developed ToC
- The accuracy of the results is compared with the recognized benchmarks
- Straightforward implementation
- Reformulation not required for the conservative case $\omega=1$
- Future developments
- To use this new methodology to compute the Reflectance, for the study of asteroid binary systems properties through light-curves inversions
- To solve RTE for the multi-slab case
- To solve the 3D time-dependent RTE

Thanks for the attention

Questions time

Research, Discovery
\& Innovation

