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’ * | ntr“OdUCtiOr{ :

« Optimal Control Problems (OCPs) represent an essential field within space
engineering.

* It Is Important to design minimum time, fuel/energy optimal trajectories for space
MISSIONS.

* The goal of this work Is to present a new methodology to solve Constrained
Optimal Control Problems (COCPs) for space guidance by means of the novel
Physics-Informed Neural Network (PINN) framework named Extreme
Theory of Functional Connections (X-TFC).

* Indirect method exploiting the Pontryagin Minimum Principle (PMP) Is used to
retrieve the optimal control.

* Problems considered: Feldbaum problem (typical OCP), minimum time — energy
optimal Halo - Halo transfer, 1D fuel optimal lunar landing.
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Constrained Optimal Control Problem (COCP)

tf

to

a = Flalt), w(t), )
P (x(to).to) = Po
P (x(ty).ty) = Py
Iu € 1,- (/,+]I

w(t),

t)dt

New unconstrained control variable with saturation function

Oi(w;) = rl?L —

{]‘; = (_')j(H‘,‘)

(/?_ — dj_

1 + exp (sw;)

e

with s= —— ——
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Unconstrained Optimal Control Problem (COCP)

with regularization term

v

& = fla(t), u(t)t)
®(x(ty).to) = Po
®(x(ty).tr) = Py

B Lf .
T = j+€/ ||w;]|? dt
to

Equality constraints in the Hamiltonian + first-

order necessary conditions

q

H=24+X"f+ €||w||* + Zl/i((l,’(“) — oi(w;))

=1
OH
— =20
Ju
OH /
y = 2ew; — I/,‘(_'),-(ll‘,') ==
Jw;
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O
- OH
X = ———o0
ox
OH

(')]/l- = (l,'(ll) — (,'),'((1‘,') =)

Transversality conditions
Alto) = —(%7“
H) =
(i) = ())—5,
wiy = -
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-”_‘—:@{'wmmmf :

(Data) + Neural Networks + PhyS|cs Laws = Physms Informed Neural Networks (PINN)

* PINNSs are a newly developed framework for solving parametric DES

 The physics laws (modeled via parametric DEs), and eventually data, drive the training of
the network

ou ou  d*u 9%u
‘ YA ; goee ey ,,A :0, EQ‘
j (X (9:131 amd (95[31(92?1 amlamd ) X '
PDE())
a 2 A
%—? Agm"; Image taken from: Lu, L., Meng, X.,

Mao, Z. and Karniadakis, G.E., 20109.
DeepXDE: A deep learning library for
solving differential equations.

————————————————————————— arXiv preprint arXiv:1907.04502.

—————————————————————————
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PINN and TFC

* The Theory of Functional Connections (TFC)
[Mortari, 2017] is a recently developed framework for
functional interpolation

« The functions are approximated via a
constrained expression

« Sum of a free-chosen function and a Bl . Nonl-)linearproblifns
I 1 1 1 ¢ S S always can be very sensitive
fUI’]CiIOI_’]ag that analytlca”y satisfies the TFC analytically satisfied to the initial guesses
constraints ) * Accurate Solutions | ¢ It suffers of the curse
« TFC can be applied to solve DEs (w/Cheb. Pol.) Low Computational | of dimensionality
 The free-chosen function is an expansion of fime ‘(’)Vl]fé‘/;‘]’)l‘gng
’ problems
Chebyshev polynomials .
- . * Many training points
* The constraints are the Initial/Boundary required for high
F:OﬂdlthﬂS (|C or BC) Iy ic(:)?;rs;y (iICC;{BCs
* The Physics-Informed Neural Network (PINN) solution via NN ana'ytically
. . satisfied)
Methods are a novel approach, coming from the PINN allows toapply this |, oo 0o
Machine Learning community g;flte‘;"gg%:‘é"z PER | expensive when
» The DE latent solutions are approximated via a cur) gfagllegtbased "
(Deep) Neural Network (NN), and the DEs drive .

the NN training (i.e., it acts as regulator)
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i Extreme Theory of Functlonal Cennectlens R

* The Physics-lnformed Extreme Theory of Functional Connections (X-TFC) is a
synergy of the TFC and the standard PINN methods that helps to overcome their
limitations for solving DEs.

PINN with DNN trained via PINN with SLNN trained
Gradient-based methods via ELM algorithms

ANN BeNN
[Lagaris et al., 1998] [Hongli et al., 2018]
Deep-TFC
[Leake et al., 2020]
TFC

[Mortari et al., 2017]

PIELM

[Dwivedi et al., 2019]

LeNN

[Yunlei et al.,
2018]




‘Extreme Theory

~ I\’- S
4 ; - . - s = = == ‘-,'-\.-_ .'\-.._ e : ,J"I_"III
= § = e = g = e B T

« X-TFC uses the TFC constrained expression where the free-chosen function g is a Single Layer
Feedforward NN (SLNN) trained via Extreme Learning Machine (ELM) Algorithm [Huang et al.,

2006].

X-TFC approach to solving generic DEs —-I DEs to be solved I

f(x:0©) for(x,9(x);©) =|A(x; ©)|+ B(xl 9(x)19) v AN [f: A —U =0 L(x,8;0)=~fce:+ N [fee; A -U

A

1) Approximate the Latent
Solution(s) with the CE 2 6

2) Analytically Satisfy the IC & BC
ICs/BCs

3) Expand with NN

4) Substitue into the (S)DEs

5) Build the Loss(es)

6) Train the NN

7) Build the Approximate 7 .
Solution(s) ﬂ

A J
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Extreme Theory of Functlonal Connections

X-TFC approach to solving generic UOCPs

Optimal Control Problem
a ty
T = ®(x(to), to, x(ty), ty) + ZL(x(t), w(t), t)dt
Meyer Cost Lo
o Lagrange Cost
r . gt & = fz(t),ult).t)
. .I llllllllllllllllllllllllllllllllll :
- TPBVP E B (to),10) = o
o : : ®(x(ty),ty) = P
: | Boundary Conditions (BCs)
, : yj(to) = o, : _
Exoand with a Analytically = : Pontryagin
o pSLNN Satisfy the BCs 1 Y (tf) =Y . Maximum/ Minimum
E Tk - . Principle
e 1 yJ( U) = Yjo re
Y; (tf) - y.fj
SubstitutcE E Build the
, " into E ) " = Losses . ..
400 403 o 2 B (50,550,550 =0 [ Li = Fi(t.;0. 55 (0.5
= e: :

Approximatc ------------------------------------ .
Train the NN
° via (Iterative)
Least-Squares
© o)
Y, ()

B
Build the Approximate Solution

« The Jacobian matrix required for an eventual iterative least-square procedure can be computed either analytically, or
by the symbolic computation, or the automatic differentiation toolbox. 8/21




« ELM is a training algorithm for Single Layer
Feedforward Neural Network (SLNN) that
randomly selects input weights and bias, and
computes the output weights (f) via least-square.

* Input weights (w;) and bias (b;) are not tuned
during the training.

 The convergence of the ELM algorithm is proved
by Huang et al (2006).
 The convergence Is guaranteed for any Input

weights and bias randomly chosen from any
continuous probability distribution.

w 19 (8)
b,
W2 0v @
. g(x)
N
o

SLNN example
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Feldbaum Problem

* The Feldbaum problem is a typical optimal control problem. Modified UOCP
igi i ™ , . kL
Original COCP min J = 3/ (f”) + 11‘)) dt + F/ w? dt
i 2 . - 549 0
. _1 2 9 |
B o 2[, T N E) = 3(7‘ + u® ) A—F +u)+ ew? + v(u— o(w))
B OH
subject to Ba U +A+rv =0
. df : > OH /
= A > “ —%%w — vd (w) =
f 7 [+ u 5., = 26w — Vo (w) =0
<< f OH Fy
= - = — t
f(0)=1 ' O |
: H
u < [”nu‘n‘ “mu.r] = ( =\ —
()7‘ /
u = o(w)

» The following transversality condition has to be applied: A(1) = A, = 0.
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 The CEs and their derivatives are:

f = (=Moo Br + Qi fo fro= (o' = Qov) By + Qllf“]
. T : il

A= (o —thoy) B+ Ay A:=Uzw“4mwfm+ﬂﬂﬂ

w = O-T/@u' ]

uw = o3,

v = JT;BH

Mapping coefficient from t
in [t,; t] to z in [-1;1]

Zf—Z()
tr — 1o

b’ =c=

() are the switching functions and their analytical expressions are computed by imposing the boundary conditions.

« The unknowns of the problemare: 8 = {3; B\ B. Bu. B}

 The losses of the associated Two-Point Boundary Value Problem (TPBVP) are: .,

fif—u
A=A+ f
i X4 1

2ew — vo (w)

u— o(w) 11/21



Parameters employed for the Feldbaum problem:

n L g [“—min- “-ma.r} C
100 25 Gaussian [-0.2,0] 4
For all the chosen problems, the initial guess of the unknowns are chosen randomly within the interval (0,1).

In order to make the UOCP close enough to the original COCP, a continuation procedure has been applied to
decrease the value of € from 1 to 10, while maintaining a good accuracy.

Decreasing the value of e induces higher values of the fictitious control w, which approaches the asymptotic limits.
0

- /

control
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Feldbaum Problem

* Results for the constrained Feldbaum problem with € = 10

Constrained optimization . Unconstrained optimization
-~ H
e RO e L™ *ﬁ. mﬁ L L e
0.8 0.8 “"*' A P S S e DY Vo Ty e
g\ ‘:::. ) . PP, * * _l< * = * + " ; :v S .
o - + . * . § -
8 0.6 _8 0.6 * | | . . | | . ‘ . j . . |
© © 10
ju £ 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
0.4 0.4 time [s] time [s]
. -,
“‘* .i‘- * ' - "* ¥ -; *ltp » l‘"!
0'20 0.5 1 0'2 ", T - ol , 107 . T Yy T
. -5 - * * Ty ¥ .y » B - = "l +
time [s] tlme [s] — 10 R VT -~ mﬁ . e
O 0 1 1 1 * 1 10'6 1 1 * L 1 ]
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
time [s] time [s]
_ -0.05 _ 017 0.04322 *,-*-i*‘_ T s ST T ok
g g 00432 -* LI *E e R (EF YT Y. EE e
S -0.1 5 0.2¢ 004318 .
© © T 0.04316 R .
0.15 -0.3 0.04314 = *., =
0.04312 Gaus* | s TP J I I | t | |
-0.2 ‘ ! -0.4 i 0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
0 0.5 1 time [s]
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Trajectory and control plus the comparison with the Performances of the constrained Feldbaum problem

unconstrained Feldbaum problem version o



Minimum time — energy optlmal Halo- = =7 "

é:T _
| mm:n l;
)

Halotransfer e . ey -:\m~

« The Circular Restricted Three Body Problem (CR3BP) framework is employed to study constrained minimum
time — energy optimal Halo-Halo transfers in the Earth-Moon system (dimensionless units are considered).

* Due to the complexity of the problem, a 2-loop optimization procedure is employed. An outer loop based on the
Particle Swarm Optimization (PSO) is used to minimize the time, whereas the fixed time - energy optimal problem
IS solved rapidly via indirect method and X-TFC in the inner loop.

1[4
min J = Fff+ /

ty
uTu(lf+e/ wlwdt subject to: ¢
to to

« The Hamiltonian of the problem is:

1 i
H = 3u U4 ewl w4+ )\,TV + )\IT.(Vl' (r) + Mv +u) + I/T(ll — p(w)) 14/21



“Mimimum time — energy optlmal Haro

Halo transfer

By using the CEs, the latent solutions are approximated.

T Q3vg + Qv
r — (a‘ — Q100 — ooy — Q:}O’(l) — QJ,O’}) Br + Quro + Sdory + e 5 e
Ay = & .
'Xl' a e CTTﬁaAv
w = o',
v = o'8,
 The first order necessary conditions and the corresponding losses are:
= 9H £ i — VU(r) — Mv — (W)
= =V ( g = Y—NU(Ir]— MvVv—o(w
(-))\,. — = U+ Ar +pv =10 : T
. OH ) Ju ﬁ,\r = A+ VVU" A,
v = —=VU[@®)+Mv+u HH y ' T
DAy — = 2eWw—rv O o (w) =10 Ly, = Ag+A+M A,
: OH T (JW
A = — o = -VVU* A, OH L, = o(w)+ A, + v
(}IrJ ' = u—ow)=0 £ 2eW — 1 O ¢ (W)
. ( w —_— —_
X, = —S==-x-M), ov D¢
v
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“Mimimum time — energy optlmal Halo - -

Halo transfer

The goal is to pass from a L1 Halo to a L2 Halo orbit.

For PSO, the cost function associated to the particles is the sum of the time of flight and the norm of the loss vector.

The other parameters used for this example are:

I L o [”i.min- “i.ma.r] km/52 C 0.4 * Earh
— — — — - - * Moon
100 35 Logistic [—5,5] - 10~ 10 03 L1
' L2
* A continuation procedure has been applied to decrease 0.2 T, venee
the value of € from 1 to 10. _ 01 ArrivalPosition
. . . . = —_— ;
« The following boundary conditions are considered: 2 o _ raneter orol G\/O
ro = [0.823385182067467, 0, —0.022277556273235] 0.1
vo = [0,0.134184170262437, 0] 02
ry = [1.119601641146371,0, 0.010405691913477 03l
vs = [0,0.178317957880263, 0] 04l
IO 0.2 0;4 0:6 0:8 1

X [LU]
Trajectory with e = 10 16/21



Minimum time — energy optlmal

Halo transfer

X, [LU]
b -
v, VU]

0 5 10 0 5 10
= 005 5 0.1
2 2 of
N 005 }m 02
5 10
— 0.01 — 0.03
S 0 2 002
= 001 = 0.01 /\
> -0.02 = 0
0 5 10 0 5 10
time [days] time [days]
10° 2 M o~ 10-2 mﬂﬁ -
‘“10 f L 2 10° T4 s
10*
0 5 10

-2
10
1073
10
-~

vq;.%‘}“"”"ﬁ"frg cg _S,x""‘ i "_"""""‘- .
1075 . *wl 4 10

0 5 10 0 5 10
s 084 \:

. 0.02 ¢
0 5 10 0 5 10

time [days] time [days]

u, [AccU]

u, [AccU]

u, [AccU]

0.2F
° P—\’\
-0.2
0 2 RS 6 8 10
0.2F
0 \
-0.2
0 2 4 6 8 10
0.2F
0 \//‘-\
-0.2
0 2 4 6 8 10
time [days]
10—2 ¥ ~ r“’o »
5 Phaacdealig o VN
= 4 o™ PnE ) . .
e T :
0 5 10 0 5 10
time [days] time [days]
d 102 »
. by 'M" - h\’\ f,hv’: r
- 10 e ~ 510 el f
T ~
- -6 7 4
10
0 5 10 0 5 10
time [days] time [days]
e ", .
g '-?‘-% q‘%’\,'.‘\’.ﬁ 2 TP M .
. _5 : . [ _" | 10'5 .‘.-. N &
10 = -
0 5 10 0 5 10
time [days] time [days]

States and control
with € = 10

Time of flight = 9.98 days.
AV=0.36 m/s.

Performances
with € = 10
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The 1D fuel optimal landing has been chosen to test the ability of the proposed framework to deal with possible
discontinuities in the control.

The fuel optimal problem is intrinsically constrained between a maximum and a minimum value. The use of a
saturation function could result in a convenient choice.

h =1
v=—g+u
to <t <ty

min J = / t) dt +/ ew?(t)dt subjectto: < /’U”,) =i
v(to) = vo
h(ty) = hy
v(tr) = vy

| Umin Ll X ey

« The Hamiltonian of the problem is:

H=u+Mv+ X (=g +u) + ew + v (u—¢(w))
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1D fuel optimal lunar landing

By using the CEs, the latent solutions are approximated.

~ g ; / . / T i, B SZg(\) S24l'f
ho = (a — oy — Doy — Qa0 —3240,.) Br+ Quho + Qahy + —o + =
: - ‘ ¥ ¥
Ah = 0By,
'Xl' — CrTﬁaAv
B = i Py
o= O'T/Blf
 The first order necessary conditions and the corresponding losses are:
: OH |
h = - = OH = & g
O, Y l+ A+ =0 Ly = v+g—9ow)
IH vu = )
b = f) =—g+u  9H , £ \h
OAy — = 2w —vo(w)=10 » Ly. = X+ A
N OH _5 dw :
T 7o OH 0 Lo = 1+A+v
Ao = —%E = —\p oy~ 4o = Ly = 2ew—ve(w)
ogv
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« The following conditions are imposed: r,=10m, v,=-2m/s, t;=4.2s, g =1.62 m/s?.

* A continuation procedure has been applied to decrease both the value of € from 100 to 10-1°> and the coefficient ¢ of

the saturation function from c, to c;.

« The parameters employed for the simulation are:

! L o [uﬂ'? 11 “;n(;__r} n]/S:') o (‘,f
100 30 Logistic [0.3] 10010

—
o
o

B - , T M ) 10 fﬂ"\
E = 4”10 F U ¥ ;
5 5 =2 - -
% 5 0 2 4 0 2
e o time [s] time [s]
0 -4 N a.h‘*
0 2 4 0 2 4 >10° L ank AN 2 1074 figaun 5 My
time [s] time [s] _ R T N“.v - ot i
States, control and : 16l
- _ : 1 3 :
_3 ———  performances with e = 10-15 0 2 4 0 2
N mn time [s] time [s]
£2 =—Umax 10°
g . ‘f‘i: ,; 1.671 :\
-a"E" 1 20 \/JV\? I 1.67 *
S 107" pe ‘ . 1.669 -
0 ; ) . | 0 2 4 0 2
0 1 2 3 4 5 time [s]
time [s]



= «f’ N

* A new PINN-based algorithm is proposed to solve optimal control problems
with control constraints using saturation functions.

« X-TFC has been successfully employed to solve the TPBVP arising from
the application of the PMP to the Hamiltonian of the problem.

» COCPs for space guidance have been solved
« Minimum time-energy optimal Halo-Halo transfer.

* 1D fuel optimal lunar landing. The bang-bang and bang-off-bang type of solution
could be well approximated by means of saturation functions.

* The proposed algorithm can be potentially suitable for real time applications
If a compromise between the optimality of the results and the precision of
the dynamics Is carried out.

» The possibility to solve more complex fuel optimal problems will be taken
Into account considering a combination of saturation functions. 21/21
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