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Introduction

• Optimal Control Problems (OCPs) represent an essential field within space

engineering.

• It is important to design minimum time, fuel/energy optimal trajectories for space

missions.

• The goal of this work is to present a new methodology to solve Constrained

Optimal Control Problems (COCPs) for space guidance by means of the novel

Physics-Informed Neural Network (PINN) framework named Extreme

Theory of Functional Connections (X-TFC).

• Indirect method exploiting the Pontryagin Minimum Principle (PMP) is used to

retrieve the optimal control.

• Problems considered: Feldbaum problem (typical OCP), minimum time – energy

optimal Halo - Halo transfer, 1D fuel optimal lunar landing.
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Constrained Optimal Control Problems
(COCPs)

Constrained Optimal Control Problem (COCP)

Unconstrained Optimal Control Problem (COCP) 

with regularization term

New unconstrained control variable with saturation function

Equality constraints in the Hamiltonian + first-

order necessary conditions 

Transversality conditions
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Physics-Informed Neural Networks

• (Data) + Neural Networks + Physics Laws = Physics-Informed Neural Networks (PINN)

• PINNs are a newly developed framework for solving parametric DEs
• The physics laws (modeled via parametric DEs), and eventually data, drive the training of 

the network 

Image taken from: Lu, L., Meng, X., 
Mao, Z. and Karniadakis, G.E., 2019. 
DeepXDE: A deep learning library for 

solving differential equations.
arXiv preprint arXiv:1907.04502.
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PINN and TFC
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• The Theory of Functional Connections (TFC) 
[Mortari, 2017] is a recently developed framework for 
functional interpolation

• The functions are approximated via a 
constrained expression 

• Sum of a free-chosen function and a 
functional that analytically satisfies the 
constraints

• TFC can be applied to solve DEs

• The free-chosen function is an expansion of 
Chebyshev polynomials 

• The constraints are the Initial/Boundary 
Conditions (IC or BC)

• The Physics-Informed Neural Network (PINN) 
Methods are a novel approach, coming from the 
Machine Learning community

• The DE latent solutions are approximated via a 
(Deep) Neural Network (NN), and the DEs drive 
the NN training (i.e., it acts as regulator)



Extreme Theory of Functional Connections 
(X-TFC)
• The Physics-Informed Extreme Theory of Functional Connections (X-TFC) is a

synergy of the TFC and the standard PINN methods that helps to overcome their

limitations for solving DEs.
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Extreme Theory of Functional Connections 
(X-TFC)
• X-TFC uses the TFC constrained expression where the free-chosen function 𝑔 is a Single Layer

Feedforward NN (SLNN) trained via Extreme Learning Machine (ELM) Algorithm [Huang et al.,

2006].

X-TFC approach to solving generic DEs
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X-TFC approach to solving generic UOCPs

Extreme Theory of Functional Connections 
(X-TFC)

• The Jacobian matrix required for an eventual iterative least-square procedure can be computed either analytically, or
by the symbolic computation, or the automatic differentiation toolbox. 8/21



Extreme Learning Machine (ELM)

• ELM is a training algorithm for Single Layer

Feedforward Neural Network (SLNN) that

randomly selects input weights and bias, and

computes the output weights (𝜷) via least-square.

• Input weights (wi) and bias (bi) are not tuned

during the training.

• The convergence of the ELM algorithm is proved

by Huang et al (2006).

• The convergence is guaranteed for any input

weights and bias randomly chosen from any

continuous probability distribution. SLNN example
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Feldbaum Problem

• The Feldbaum problem is a typical optimal control problem.

Original COCP

Modified UOCP

• The following transversality condition has to be applied: 𝜆 1 = 𝜆𝑓 = 0.
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Feldbaum Problem

• The CEs and their derivatives are:

• Ω are the switching functions and their analytical expressions are computed by imposing the boundary conditions.

Mapping coefficient from t 

in [t0; tf] to z in [-1;1]

• The unknowns of the problem are:

• The losses of the associated Two-Point Boundary Value Problem (TPBVP) are:
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Feldbaum Problem

• Parameters employed for the Feldbaum problem:

• For all the chosen problems, the initial guess of the unknowns are chosen randomly within the interval (0,1).

• In order to make the UOCP close enough to the original COCP, a continuation procedure has been applied to
decrease the value of 𝜖 from 1 to 10-5, while maintaining a good accuracy.

• Decreasing the value of 𝜖 induces higher values of the fictitious control 𝑤, which approaches the asymptotic limits.
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Feldbaum Problem

• Results for the constrained Feldbaum problem with 𝜖 = 10-5

Trajectory and control plus the comparison with the 

unconstrained Feldbaum problem version

Performances of the constrained Feldbaum problem
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Minimum time – energy optimal Halo -
Halo transfer

• The Circular Restricted Three Body Problem (CR3BP) framework is employed to study constrained minimum
time – energy optimal Halo-Halo transfers in the Earth-Moon system (dimensionless units are considered).

• Due to the complexity of the problem, a 2-loop optimization procedure is employed. An outer loop based on the
Particle Swarm Optimization (PSO) is used to minimize the time, whereas the fixed time - energy optimal problem
is solved rapidly via indirect method and X-TFC in the inner loop.

• The Hamiltonian of the problem is:
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Minimum time – energy optimal Halo -
Halo transfer

• By using the CEs, the latent solutions are approximated.

• The first order necessary conditions and the corresponding losses are:
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Minimum time – energy optimal Halo -
Halo transfer

• The goal is to pass from a L1 Halo to a L2 Halo orbit.

• For PSO, the cost function associated to the particles is the sum of the time of flight and the norm of the loss vector.

• The other parameters used for this example are:

• A continuation procedure has been applied to decrease

the value of 𝜖 from 1 to 10-6.

• The following boundary conditions are considered:

Trajectory with 𝜖 = 10-6 16/21



Minimum time – energy optimal Halo -
Halo transfer

• Time of flight = 9.98 days.

• Δ𝑉= 0.36 m/s.

States and control 
with 𝜖 = 10-6

Performances 
with 𝜖 = 10-6
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1D fuel optimal lunar landing

• The 1D fuel optimal landing has been chosen to test the ability of the proposed framework to deal with possible
discontinuities in the control.

• The fuel optimal problem is intrinsically constrained between a maximum and a minimum value. The use of a
saturation function could result in a convenient choice.

• The Hamiltonian of the problem is:
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1D fuel optimal lunar landing

• By using the CEs, the latent solutions are approximated.

• The first order necessary conditions and the corresponding losses are:
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1D fuel optimal lunar landing

• The following conditions are imposed: r0 = 10 m, v0 = - 2 m/s, tf = 4.2 s, g = 1.62 m/s2 .

• A continuation procedure has been applied to decrease both the value of 𝜖 from 100 to 10-15 and the coefficient c of
the saturation function from c0 to cf.

• The parameters employed for the simulation are:

States, control and 
performances with 𝜖 = 10-15
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Conclusions

• A new PINN-based algorithm is proposed to solve optimal control problems
with control constraints using saturation functions.

• X-TFC has been successfully employed to solve the TPBVP arising from
the application of the PMP to the Hamiltonian of the problem.

• COCPs for space guidance have been solved

• Minimum time-energy optimal Halo-Halo transfer.

• 1D fuel optimal lunar landing. The bang-bang and bang-off-bang type of solution
could be well approximated by means of saturation functions.

• The proposed algorithm can be potentially suitable for real time applications
if a compromise between the optimality of the results and the precision of
the dynamics is carried out.

➢ The possibility to solve more complex fuel optimal problems will be taken
into account considering a combination of saturation functions. 21/21
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