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Optimal intercept problems
represent one of the most useful
optimization problem In
aerospace engineering.

Optimal intercept problems are
mainly related to missile
guidance.

[t Is Important to have robust
algorithms suitable for real-
time applications.
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* To employ Physics-Informed Neural Networks (PINN) to solve
Optimal Control Problems (OPCs).

* To develop a new algorithm, suitable for on-board application,
based on the newly developed Physics-Informed Extreme Theory
of Functional Connections (X-TFC) [Schiassi et al. 2020] to
compute optimal trajectories for intercept problems.

* The focus of this talk Is to show the effectiveness of our X-TFC
based algorithm in solving optimal control problems, focusing
particularly to the solution of the optimal intercept problem.
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‘ (N%%tfgl+N';'twg?L;\'(eF§w\m§s + Physics Laws = Physics-Informed «  Optimal Control Problems (OCPs) are

*  PINNSs are a newly developed framework for solving DEs generally hard and computationally

expensive. In general, Open-Loo
« The physics laws (modeled via DEs), and eventually data, drive P : J . P P
the training of the network solutions can be found In two ways

 Direct Method: Transform a

. d 0 0* 0? . : ..
/ (x; e B B am;;d;...;x) =0, x€Q  Blu,x)=0 on O, continuous problem in a finite NLP
problems and find the minimum
’ » Indirect Method: Apply
96 _ )\ o4 Tf Pontryagin Minimum Principle
: (PMP) to derive the necessary
;'___'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'___'_'_"l Condltlons
\ Y - . .
. ! M :
i(z,t) — gp(z,t)  H—{Loss ——>(6" e The solution of the OC
~ T ‘ reduces to the solution of a
on (T 1) ~ gr(w, 2, 1) 1 Two Point Boundary Value
Automatic differentiation Problem (TPBVP) that Is a
Image taken from: Lu, L., Meng, X., Mao, Z. and Karniadakis, G.E., 2019. SyStemS Of ODES
DeepXDE: A deep learning library for solving differential equations.
arXiv preprint arXiv:1907.04502.




New Methods for Solving DES

The Theory of Functional Connections (TFC)
[Mortari, 2017] is a recently developed framework for
functional interpolation

« The functions are approximated via a constrained
expression

. Sum of a free-chosen function and a
functional that analytically satisfies the
constraints

« TFCisapplied to solve parametric DEs

The free-chosen function is an expansion of
Chebyshev polynomials

The constraints are the Initial/Boundary
Conditions (IC or BC)

The Physics-Informed Neural Network (PINN)
Methods are a novel approach, coming from the
Machine Learning community

« The DE latent solutions are approximated via a
(Deep) Neural Network (NN), and the DEs drive
the NN training (i.e. It acts as regulator)

TFC

(W/Cheb. Pol.)

ICs/BCs always
analytically satisfied
Accurate Solutions
Low Computational
Time

* Non-linear problems
can be very sensitive
to the initial guesses

|t suffers of the curse
of dimensionality
when solving
ODE/PDE problems
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PINN

Expanding the latent
solution via NN
allows to apply this
method to solve high
order PDEs (e.g. no
curse of
dimensionality)

« Many training points
required for high
accuracy (ICs/BCs
not analytically
satisfied)

« Computational
expensive when
gradient-based
methods are used to
train the NN
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* The Physics-Informed Extreme Theory of Functional Connections (X-TFC) is a synergy of the TFC and the standard
PINN methods that helps to overcome their limitations for solving DEs

« X-TFC uses the TFC constrained expression where the free-chosen function is a Single Layer Feedforward
NN (SLNN) trained via Extreme Learning Machine (ELM) Algorithm [Huang et al., 2006]

PINN with DNN trained via PINN with SLNN trained
Gradient-based methods via ELM algorithms

PIELM
AN N Be NN [Dwivedi et al., 2019]
[Lagaris et al., 1998] [Hongli et al., 2018]
LeNN

[Yunlei et al.,
2018]

PINN

[Raissi et al., 2019]

X-TFC

[Schiassi et al., 2020]

TFC
[Mortari et al., 2017]
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DEs to be solved

M L(x,0:09)=~fce:+N|[fece;A| - U

f(x;©) Wfoe(x,g(x);0) =

A

1) Approximate the Latent

Solution(s) with the CE -
2) Analytically Satisfy the IC & BC .

ICs/BCs a
3) Expand with NN 3 S -
4) Substitue into the (S)DEs '

5) Build the Loss(es)
6) Train the NN
7) Build the Approximate 7

Solution(s) ﬁ )




X-TFC approach to solving generic OCPs ﬂ
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Optimal Control Problem

ty
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 ELM is a training algorithm for
SLNN that randomly selects )
Input weights and bias, and P!
computes the output weights via
least-square

* Input weights and bias are
not tuned during the training

* The convergence of the ELM
algorithm is proved by Huang et X
al. [2006]

* The convergence IS
guaranteed for any input
welghts and bias randomly
chosen to any continuous
probability distribution

g(x)




Feldbaum Problem: formulation ﬂ
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The Feldbaum Problem is a generic OCP * Applying the PMP the TPBVP that we
that we have chosen as it has analytical will solve via X-TFC is:
solution. This allowed us to perform ]

. : : OH
sensitivity analysis to check the accuracy f = —=—f—=)

] O f0) = fo =

and the robustness of the proposed | oOH st 4y (1) — As — 0 (transversality condition)
physics-informed algorithm. The OCP is A= g = RS 4

posed as following: « The CEs and their derivatives are:

1 f — (0‘ — th())T ,Bf T Qlf() f = ¥ (U’ - Q,l h"U)Tﬁ/}f L Q,l fU}
: 1 o \T 7 . Cr
min J = 2/0 (f* +u?)dt A= o=y B X = B [(of - Qihy) By +
subject to « The unknowns and the losses are:
. df
1= S B={B; B}
0<t<1 i
£(0) =1 Ly = f+f+A

Ly = ).\—)\—|—f



Feldbaum Problem: results

Time evolution of the state and control

trajectory

control
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Performances analysis

N L CPU time [s] mean(IL) T — T
10 50 0.0007 49 x 107 55x%x 10"~
10 90 0.0008 51x 1071 6.5x 1073
20 90 0.0008 56 x 1071 1.5x 1073
50 90 0.001 56 x 1071 73 x 1078
200 90 0.004 83x 1071 1.3x107°
500 90 0.006 87x 1071 13x107°
100 20 0.0009 1.9x 107t 1.7x107?
100 50 0.003 1.5x107°% 89x107°
100 100 0.004 1.4x107% 1.3x107°
100 150 0.005 81x 1071 1.3x107°
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Sensitivity analysis: fixed L = 100 (left), fixed N = 100 (right)
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Activation Function: Gaussian
Input weights and bias sampled from: unif [-10,10]




Minimum Time - Energy Optimal ﬂ

Intercept: formulation

Space Systems
Engineering Laboratory

* The minimum time-energy optimal * Applying the PMP (plus transversality conditions),
Intercept problem is posed as following: we get the following TPBVP:

gum—

subject to -

where r and v are the relative position and
velocity vectors between the target and the
Interceptor, a; and a,, are the commanded

acceleration of the target and the interceptor,
respectively.

* The TPBVP will be solved via X-TFC.
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* The CEs and their derivatives are: * The unknowns and the losses are:
/ | g23l?0j Z
]-J. — (O’ == Q[U'() == on'f = Qf}ao) ';(3_]' + Ql ,"0_) + Q‘Zl'f} + b2 - = {‘{'3,..1 ';'37..-2 ,{37..3 {{3/\".1 [3/\72 ,[3/\’3 "3Al"1 '{3)\&2 /‘/3Av‘3 @}
2 | / / / g N / / Q{KUUJ
v; = b (a' — Qoo — Yoy — ano) Bi + Do, + Doy, + —5 ] _
- _ O L == a_aT_+_/\
aj = b*|(o" ~ Voo~ Woy —UWob) B;+ Yro, + Wry, + Zlf’} = 7 Rl
. ] E,\r'] = /\r.j
A,J = O'T,B,..J' .
Ay = b2oTB,, Lxo; = AvitAr;
T 3
/\L'.j = R ﬁgv.j + /\vf‘j
' (2 T ) Ly = Z(Ar111)+r
/\,..J' = bo /3,-._,' i
- 9=]
The o are the activation functions of the SLNN that Is trained ) 25 — 20
via ELM, where B’s are the output weights of the network. b =c = —
— 1o
The Q’s are called switching functions, and their Mapping coefficient from t in
expression can be found in the manuscript. [t,; t] to Z in [z,; Z]




Minimum Time — Energy Optimal Intercept:

results

Performances analysis (I'=1)

r,= [500, -600, -500] m
V, = [-50, 60, 5] m/s
ar=[1, -2, 0,1] m/s? (assumed constant)
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N L #ofiterations CPU time [s] mean(LL) mean(H + 1) H(ty)+ T ts[s] Y |

20 8 8 0.005 2.2 x 10°° 2.5x 10°° 1.3 x 1077 4554 65.30
20 12 5 0.006 1.7 x 10~ 39x10° 6.6x107'* 4554 65.30
20 16 9 0.01 133 107" 25x107°% 7.3x107'% 4554 65.30
30 16 9 0.02 2.6 x 1077 2.1x1077 62x107" 4554 65.30
30 30 7 0.03 20x107Y  74x107°%° 28x1071° 4554 65.30
30 30 7 0.03 20107 T4%10° 28x107" 4554 6530

VA8

Activation Function: hyperbolic tangent
Input weights and bias sampled from: unif [-1,1]

We compare our results with GPOPS. The results

obtained with GPOPS were the following: tf = 45.54,

H(tf) + I' = 2.35 x 10-%, with a CPU time ~ 1.48 [s]




Minimum Time — Energy Optimal

Intercept: results (cont’d)
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Optimal Trajectories

100

Activation Function: hyperbolic tangent

Input weights and bias sampled from: unif [-1,1]

Number of points: 20
Number of neurons: 16




Conclusions and Outlooks

We presented a new algorithm based on the newly
developed Physics-Informed X-TFC for solving general
OPC:s.

e  The physics-informed X-TFC framework is used to
solve the TPBVP arising from the application of the
PMP.

The algorithm was tested in designing minimum time —
energy optimal intercept trajectories.

 The CPU time, in order of milliseconds, makes the
proposed algorithm suitable for on board applications.

* The performances are comparable with the state-of-
the-art software such as GPOPS II.

Works are In progress to:

«  Employing the physics-informed X-TFC based
algorithm to tackle a wide variety of OPCs (especially
OPCs for space guidance, navigation, and control).

Use the ability of the X-TFC framework in solving
PDEs with high accuracy with a low CPU time to
perform real-time computation of closed-loop optimal
control via the direct solution of the HIB equation

VA8
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