Physics Informed Neural Networks for Optimal Intercept Problem

1Enrico Schiassi,
2Andrea D’Ambrosio, 1Roberto Furfaro, and 2Fabio Curti,

1University of Arizona, USA
2Sapienza University of Rome

IAA/AAS SciTech Forum 2020, Dec. 08-10, 2020,
Moscow, Russia
Contents

• Introduction
 • Overview and Motivations
 • Goals

• Background
 • Physics-Informed Neural Networks and Optimal Control Problems
 • New Methods for Solving DEs

• Extreme Theory of Functional Connections
 • X-TFC approach to solving generic DEs
 • X-TFC approach to solving generic OCPs
 • ELM algorithm

• Problems and Results
 • Feldbaum Problem
 • Minimum Time-Energy Optimal Intercept

• Conclusions and Outlooks
• Optimal intercept problems represent one of the most useful optimization problem in aerospace engineering.

• Optimal intercept problems are mainly related to missile guidance.
 • It is important to have robust algorithms suitable for real-time applications.
Introduction: Goals

• To employ *Physics-Informed Neural Networks (PINN)* to solve Optimal Control Problems (OPCs).

• To develop a new algorithm, suitable for on-board application, based on the newly developed *Physics-Informed Extreme Theory of Functional Connections (X-TFC)* [Schiassi et al. 2020] to compute optimal trajectories for intercept problems.

 • The focus of this talk is to show the effectiveness of our X-TFC based algorithm in solving optimal control problems, focusing particularly to the solution of the optimal intercept problem.
PINN and OCPs

- (Data) + Neural Networks + Physics Laws = Physics-Informed Neural Networks (PINN)
- PINNs are a newly developed framework for solving DEs
 - The physics laws (modeled via DEs), and eventually data, drive the training of the network

\[f \left(\mathbf{x}, \frac{\partial u}{\partial x_1}, \ldots, \frac{\partial u}{\partial x_d}, \frac{\partial^2 u}{\partial x_1 \partial x_1}, \ldots; \lambda \right) = 0, \quad \mathbf{x} \in \Omega, \quad B(u, \mathbf{x}) = 0 \text{ on } \partial \Omega. \]

- Optimal Control Problems (OCPs) are generally hard and computationally expensive. In general, Open-Loop solutions can be found in two ways
 - **Direct Method**: Transform a continuous problem in a finite NLP problems and find the minimum
 - **Indirect Method**: Apply Pontryagin Minimum Principle (PMP) to derive the necessary conditions
 - The solution of the OCP reduces to the solution of a Two Point Boundary Value Problem (TPBVP) that is a systems of ODEs

The Theory of Functional Connections (TFC) [Mortari, 2017] is a recently developed framework for functional interpolation:

- The functions are approximated via a constrained expression:
 - Sum of a free-chosen function and a functional that analytically satisfies the constraints
- TFC is applied to solve parametric DEs:
 - The free-chosen function is an expansion of Chebyshev polynomials
 - The constraints are the Initial/Boundary Conditions (IC or BC)
- The Physics-Informed Neural Network (PINN) Methods are a novel approach, coming from the Machine Learning community:
 - The DE latent solutions are approximated via a (Deep) Neural Network (NN), and the DEs drive the NN training (i.e. it acts as regulator)

Pros	Cons
TFC (w/Cheb. Pol.) | **ICs/BCs always analytically satisfied**
- Accurate Solutions
- Low Computational Time
- Non-linear problems can be very sensitive to the initial guesses
- It suffers of the curse of dimensionality when solving ODE/PDE problems

PINN | **Many training points required for high accuracy (ICs/BCs not analytically satisfied)**
- Expanding the latent solution via NN allows to apply this method to solve high order PDEs (e.g. no curse of dimensionality)
- Computational expensive when gradient-based methods are used to train the NN

New Methods for Solving DEs
New Methods for Solving DEs (cont’d)

- The Physics-Informed **Extreme Theory of Functional Connections** (X-TFC) is a synergy of the TFC and the standard PINN methods that helps to overcome their limitations for solving DEs
 - X-TFC uses the TFC constrained expression where the free-chosen function is a Single Layer Feedforward NN (SLNN) trained via Extreme Learning Machine (ELM) Algorithm [Huang et al., 2006]
X-TFC approach to solving generic DEs

1) Approximate the Latent Solution(s) with the CE
2) Analytically Satisfy the ICs/BCs
3) Expand with NN
4) Substitute into the (S)DEs
5) Build the Loss(es)
6) Train the NN
7) Build the Approximate Solution(s)
X-TFC approach to solving generic OCPs

1. Optimal Control Problem
 \[\mathcal{J} = \Phi(x(t_0), t_0, x(t_f), t_f) + \int_{t_0}^{t_f} \mathcal{L}(x(t), u(t), t) \, dt \]
 Meyer Cost
 \[\dot{x} = f(x(t), u(t), t) \]
 Lagrange Cost
 \[\Phi(x(t_0), t_0) = \Phi_0 \]
 \[\Phi(x(t_f), t_f) = \Phi_f \]

2. Expand with a SLNN

3. Analytically Satisfy the BCs
 \[
 \begin{align*}
 y_j(t_0) &= y_{0j} \\
 y_j(t_f) &= y_{fj} \\
 \dot{y}_j(t_0) &= \dot{y}_{0j} \\
 \dot{y}_j(t_f) &= \dot{y}_{fj}
 \end{align*}
 \]

4. Substitute into

5. Build the Losses
 \[\mathcal{L}_i = F_i(t, y_j(t), \dot{y}_j(t), y_j(t)) = 0 \]

6. Build the Approximate Solution

7. Train the NN via (Iterative) Least-Squares

8. Build the Approximate Solution

TPBVP
ELM algorithm

- ELM is a training algorithm for SLNN that randomly selects input weights and bias, and computes the output weights via least-square
 - Input weights and bias are not tuned during the training
- The convergence of the ELM algorithm is proved by Huang et al. [2006]
 - The convergence is guaranteed for any input weights and bias randomly chosen to any continuous probability distribution
The Feldbaum Problem is a generic OCP that we have chosen as it has analytical solution. This allowed us to perform sensitivity analysis to check the accuracy and the robustness of the proposed physics-informed algorithm. The OCP is posed as following:

\[J = \frac{1}{2} \int_0^1 (f^2 + u^2) \, dt \]

subject to

\[\frac{df}{dt} = -f + u \quad 0 \leq t \leq 1 \]

\[f(0) = 1 \]

Applying the PMP the TPBVP that we will solve via X-TFC is:

\[
\begin{align*}
\dot{f} &= \frac{\partial H}{\partial \lambda} = -f - \lambda \\
\dot{\lambda} &= -\frac{\partial H}{\partial x} = \lambda - f \\
\end{align*}
\]

s.t. \(f(0) = f_0 = 1 \) \(\lambda(1) = \lambda_f = 0 \) (transversality condition)

The CE and their derivatives are:

\[
\begin{align*}
\dot{f} &= (\mathbf{\sigma} - \Omega_1 \mathbf{h}_0)^T \mathbf{\beta}_f + \Omega_1 f_0 \\
\dot{\lambda} &= (\mathbf{\sigma} - \Omega_1 \mathbf{h}_f)^T \mathbf{\beta}_\lambda + \Omega_1 \lambda_f \\
\end{align*}
\]

The unknowns and the losses are:

\[\mathbf{\beta} = \{\mathbf{\beta}_f \quad \mathbf{\beta}_\lambda\}^T \]

\[
\begin{align*}
\mathcal{L}_f &= \dot{f} + f + \lambda \\
\mathcal{L}_\lambda &= \dot{\lambda} - \lambda + f \\
\end{align*}
\]
Time evolution of the state and control

Sensitivity analysis: fixed $L = 100$ (left), fixed $N = 100$ (right)

| N | L | CPU time [s] | $\text{mean}(L)$ | $|J - J^*|$ |
|-----|-----|--------------|------------------|----------|
| 10 | 50 | 0.0007 | 4.9×10^{-16} | 5.5×10^{-2} |
| 10 | 90 | 0.0008 | 5.1×10^{-16} | 6.5×10^{-3} |
| 20 | 90 | 0.0008 | 5.6×10^{-16} | 1.5×10^{-3} |
| 50 | 90 | 0.001 | 5.6×10^{-16} | 7.3×10^{-8} |
| 200 | 90 | 0.004 | 8.3×10^{-15} | 1.3×10^{-9} |
| 500 | 90 | 0.006 | 8.7×10^{-14} | 1.3×10^{-9} |
| 100 | 20 | 0.0009 | 1.9×10^{-1} | 1.7×10^{-2} |
| 100 | 50 | 0.003 | 1.5×10^{-6} | 8.9×10^{-9} |
| 100 | 100 | 0.004 | 1.4×10^{-15} | 1.3×10^{-9} |
| 100 | 150 | 0.005 | 8.1×10^{-15} | 1.3×10^{-9} |

Activation Function: Gaussian
Input weights and bias sampled from: unif [-10,10]
The minimum time-energy optimal intercept problem is posed as following:

\[
\min J = \Gamma t_f + \frac{1}{2} \int_{t_0}^{t_f} (a_M a_M) \, dt
\]

subject to

\[
\begin{align*}
\dot{r} &= v \\
\dot{v} &= a_T - a_M \\
t_0 &\leq t \leq t_f \\
r(t_0) &= r_0 \\
v(t_0) &= v_0 \\
r(t_f) &= 0
\end{align*}
\]

where \(r \) and \(v \) are the relative position and velocity vectors between the target and the interceptor, \(a_T \) and \(a_M \) are the commanded acceleration of the target and the interceptor, respectively.

Applying the PMP (plus transversality conditions), we get the following TPBVP:

\[
\begin{align*}
\dot{r} &= \frac{\partial H}{\partial \lambda_r} = v \\
\dot{v} &= -\frac{\partial H}{\partial \lambda_v} = a_T - \lambda_v \\
\dot{\lambda}_r &= -\frac{\partial H}{\partial r} = 0 \\
\dot{\lambda}_v &= -\frac{\partial H}{\partial v} = -\lambda_r \\
H(t_f) + \Gamma &= 0 \\
r(t_0) &= r_0 \\
v(t_0) &= v_0 \\
r(t_f) &= 0 \\
\lambda_v(t_f) &= 0
\end{align*}
\]

The TPBVP will be solved via X-TFC.
Minimum Time - Energy Optimal Intercept: formulation (cont’d)

- The CEs and their derivatives are:

\[
\begin{align*}
 r_j &= \left(\sigma - \Omega_1 \sigma_0 - \Omega_2 \sigma_f - \Omega_3 \sigma_0' \right)^T \beta_j + \Omega_1 r_{0j} + \Omega_2 r_{fj} + \frac{\Omega_3 v_0_j}{b^2} \\
 v_j &= b^2 \left[\left(\sigma' - \Omega_1' \sigma_0 - \Omega_2' \sigma_f - \Omega_3' \sigma_0' \right)^T \beta_j + \Omega_1' r_{0j} + \Omega_2' r_{fj} + \frac{\Omega_3' v_0_j}{b^2} \right] \\
 a_j &= b^4 \left[\left(\sigma'' - \Omega_1'' \sigma_0 - \Omega_2'' \sigma_f - \Omega_3'' \sigma_0'' \right)^T \beta_j + \Omega_1'' r_{0j} + \Omega_2'' r_{fj} + \frac{\Omega_3'' v_0_j}{b^2} \right] \\
 \lambda_{r,j} &= \sigma^T \beta_{r,j} \\
 \dot{\lambda}_{r,j} &= b^2 \sigma^T \beta_{r,j} \\
 \lambda_{v,j} &= \left(\sigma - \sigma_f \right)^T \beta_{v,j} + \lambda_{v,j} \\
 \dot{\lambda}_{v,j} &= b^2 \sigma^T \beta_{v,j}
\end{align*}
\]

- The unknowns and the losses are:

\[
\begin{align*}
 \Xi &= \{ \beta_{r,1}, \beta_{r,2}, \beta_{r,3}, \beta_{\lambda_r,1}, \beta_{\lambda_r,2}, \beta_{\lambda_r,3}, \beta_{\lambda_v,1}, \beta_{\lambda_v,2}, \beta_{\lambda_v,3} \} \\
 \mathcal{L}_{a,j} &= a_j - aT_{r,j} + \lambda_{v,j} \\
 \mathcal{L}_{\lambda_{r,j}} &= \dot{\lambda}_{r,j} \\
 \mathcal{L}_{\lambda_{v,j}} &= \dot{\lambda}_{v,j} + \lambda_{r,j} \\
 \mathcal{L}_{\lambda_H} &= \sum_{j=1}^{3} (\lambda_{r,j} v_j) + \Gamma \\
 b^2 &= c = \frac{z_f - z_0}{t_f - t_0}
\end{align*}
\]

The σ are the activation functions of the SLNN that is trained via ELM, where β’s are the output weights of the network.

The Ω’s are called switching functions, and their expression can be found in the manuscript.
Performances analysis ($\Gamma=1$)

\[
\begin{align*}
 r_0 &= [500, -600, -500] \text{ m} \\
 v_0 &= [-50, 60, 5] \text{ m/s} \\
 a_T &= [1, -2, 0,1] \text{ m/s}^2 \text{ (assumed constant)}
\end{align*}
\]

We compare our results with GPOPS. The results obtained with GPOPS were the following: $t_f = 45.54$, $H(t_f) + \Gamma = 2.35 \times 10^{-6}$, with a CPU time ≈ 1.48 [s]
Minimum Time – Energy Optimal Intercept: results (cont’d)

Time evolution of the states and control

\[L_2 = 1.3 \times 10^{-9} \]

Optimal Trajectories

Activation Function: hyperbolic tangent
Input weights and bias sampled from: unif [-1,1]
Number of points: 20
Number of neurons: 16
Conclusions and Outlooks

- We presented a new algorithm based on the newly developed Physics-Informed X-TFC for solving general OPCs.
 - The physics-informed X-TFC framework is used to solve the TPBVP arising from the application of the PMP.
- The algorithm was tested in designing minimum time – energy optimal intercept trajectories.
 - The CPU time, in order of milliseconds, makes the proposed algorithm suitable for on board applications.
 - The performances are comparable with the state-of-the-art software such as GPOPS II.
- Works are in progress to:
 - Employing the physics-informed X-TFC based algorithm to tackle a wide variety of OPCs (especially OPCs for space guidance, navigation, and control).
 - Use the ability of the X-TFC framework in solving PDEs with high accuracy with a low CPU time to perform real-time computation of closed-loop optimal control via the direct solution of the HJB equation.
Thanks for watching =)