

Physics Informed Neural Networks for Optimal Intercept Problem

¹Enrico Schiassi, ²Andrea D'Ambrosio, ¹Roberto Furfaro, and ²Fabio Curti,

> ¹University of Arizona, USA ²Sapienza University of Rome

IAA/AAS SciTech Forum 2020, Dec. 08-10, 2020, Moscow, Russia



Contents

- Introduction
 - **Overview and Motivations**
 - Goals \bullet
- Background \bullet
 - Physics-Informed Neural Networks and Optimal Control Problems
 - New Methods for Solving DEs ullet
- **Extreme Theory of Functional Connections**
 - X-TFC approach to solving generic DEs
 - X-TFC approach to solving generic OCPs •
 - ELM algorithm ullet
- **Problems and Results** \bullet
 - Feldbaum Problem \bullet
 - Minimum Time-Energy Optimal Intercept
- **Conclusions and Outlooks**

Introduction: Overview and Motivations

- Optimal intercept problems represent one of the most useful optimization problem in aerospace engineering.
- Optimal intercept problems are mainly related to missile guidance.
 - It is important to have robust algorithms suitable for real-time applications.

Introduction: Goals

- To employ *Physics-Informed Neural Networks (PINN)* to solve Optimal Control Problems (OPCs).
- To develop a new algorithm, suitable for on-board application, based on the newly developed *Physics-Informed Extreme Theory* of Functional Connections (X-TFC) [Schiassi et al. 2020] to compute optimal trajectories for intercept problems.
 - The focus of this talk is to show the effectiveness of our X-TFC based algorithm in solving optimal control problems, focusing particularly to the solution of the optimal intercept problem.

PINN and OCPs

- (Data) + Neural Networks + Physics Laws = Physics-Informed Neural Networks (PINN)
- PINNs are a newly developed framework for solving DEs
 - The physics laws (modeled via DEs), and eventually data, drive the training of the network

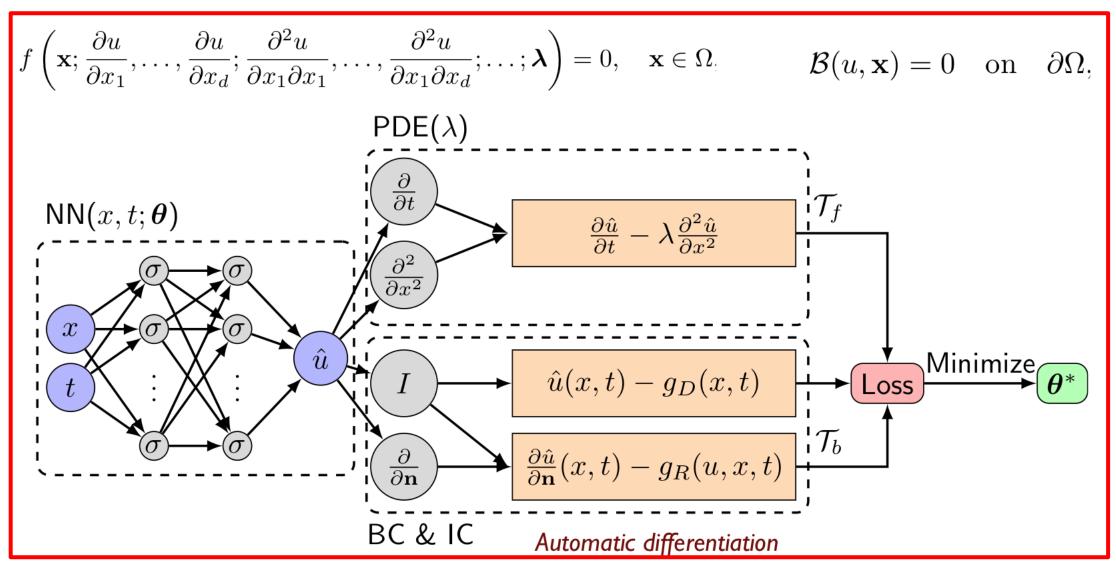


Image taken from: Lu, L., Meng, X., Mao, Z. and Karniadakis, G.E., 2019. DeepXDE: A deep learning library for solving differential equations. *arXiv preprint arXiv:1907.04502*.

Space Systems Engineering Laboratory

Optimal Control Problems (OCPs) are generally hard and computationally expensive. In general, Open-Loop solutions can be found in two ways

- **Direct Method**: Transform a continuous problem in a finite NLP problems and find the minimum
- Indirect Method: Apply
 Pontryagin Minimum Principle
 (PMP) to derive the necessary
 conditions
 - The solution of the OC reduces to the solution of a Two Point Boundary Value Problem (TPBVP) that is a systems of ODEs

New Methods for Solving DEs

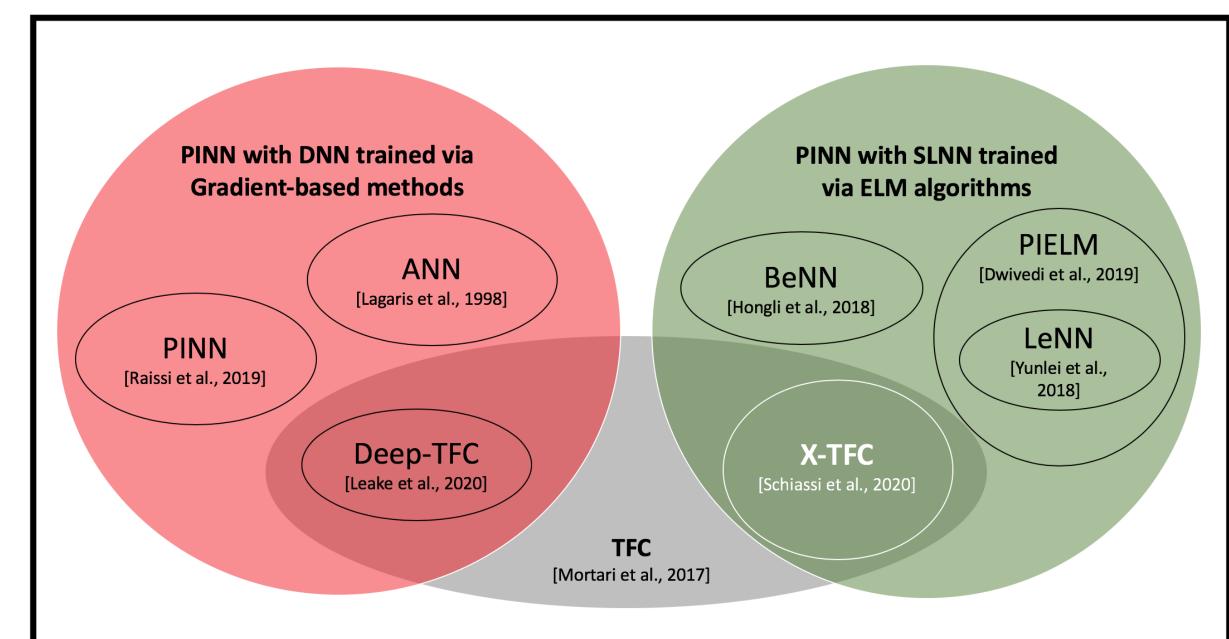
- The **Theory of Functional Connections (TFC)** [Mortari, 2017] is a recently developed framework for functional interpolation
 - The functions are approximated via a **constrained expression**
 - Sum of a **free-chosen** function and a functional that **analytically** satisfies the constraints
 - TFC is applied to solve parametric DEs
 - The free-chosen function is an expansion of Chebyshev polynomials
 - The constraints are the Initial/Boundary Conditions (IC or BC)
- The **Physics-Informed Neural Network (PINN) Methods** are a novel approach, coming from the Machine Learning community
 - The DE latent solutions are approximated via a (Deep) Neural Network (NN), and the DEs drive the NN training (i.e. it acts as regulator)

TF((w/Cheb.

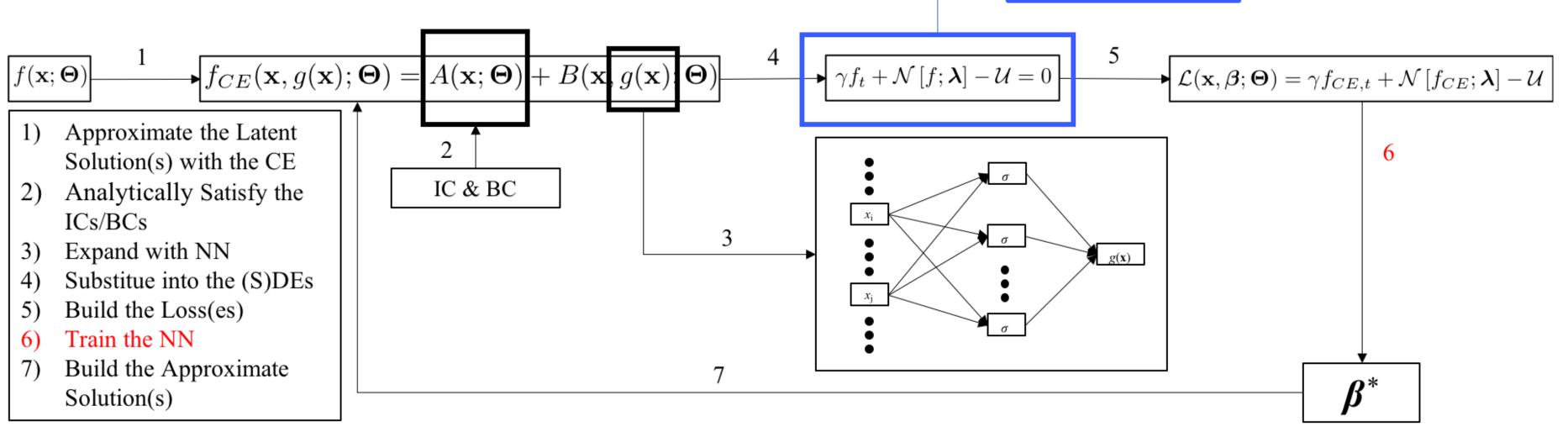
	Pros	Cons
C Pol.)	 ICs/BCs always analytically satisfied Accurate Solutions Low Computational Time 	 Non-linear problems can be very sensitive to the initial guesses It suffers of the curse of dimensionality when solving ODE/PDE problems
IN	• Expanding the latent solution via NN allows to apply this method to solve high order PDEs (e.g. no curse of dimensionality)	 Many training points required for high accuracy (ICs/BCs not analytically satisfied) Computational expensive when gradient-based methods are used to train the NN

New Methods for Solving DEs (cont'd)

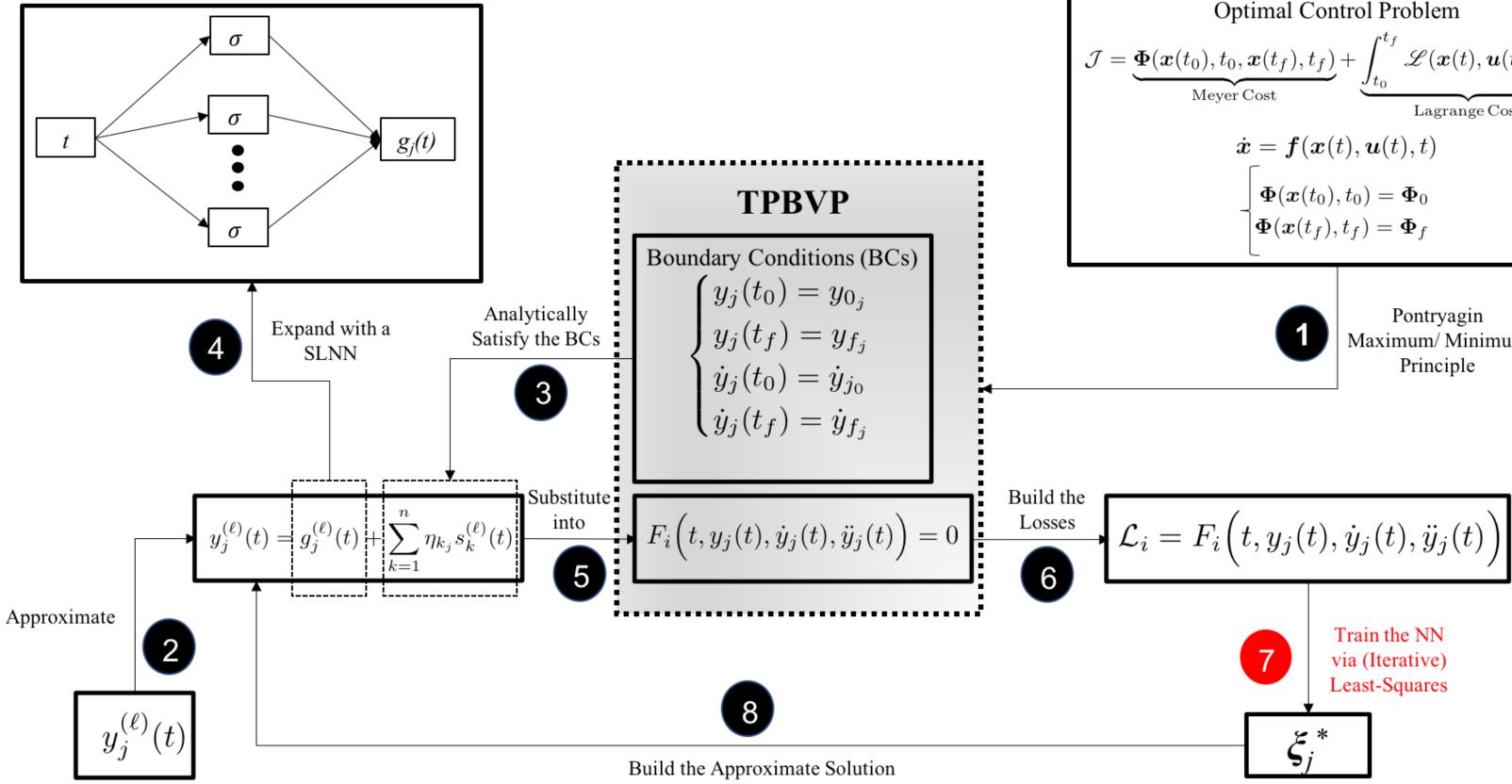
- The Physics-Informed Extreme Theory of Functional Connections (X-TFC) is a synergy of the TFC and the standard ulletPINN methods that helps to overcome their limitations for solving DEs
 - X-TFC uses the TFC constrained expression where the free-chosen function is a Single Layer Feedforward NN (SLNN) trained via Extreme Learning Machine (ELM) Algorithm [Huang et al., 2006]

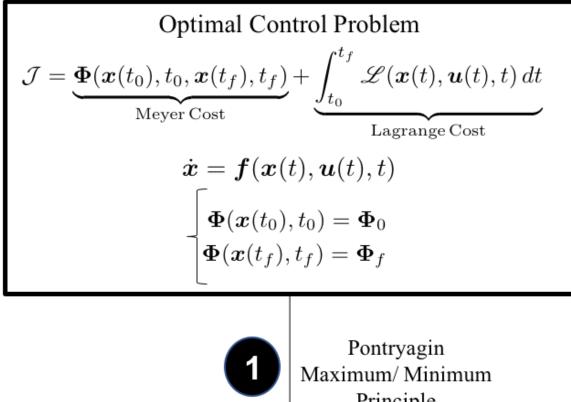


X-TFC approach to solving generic DEs



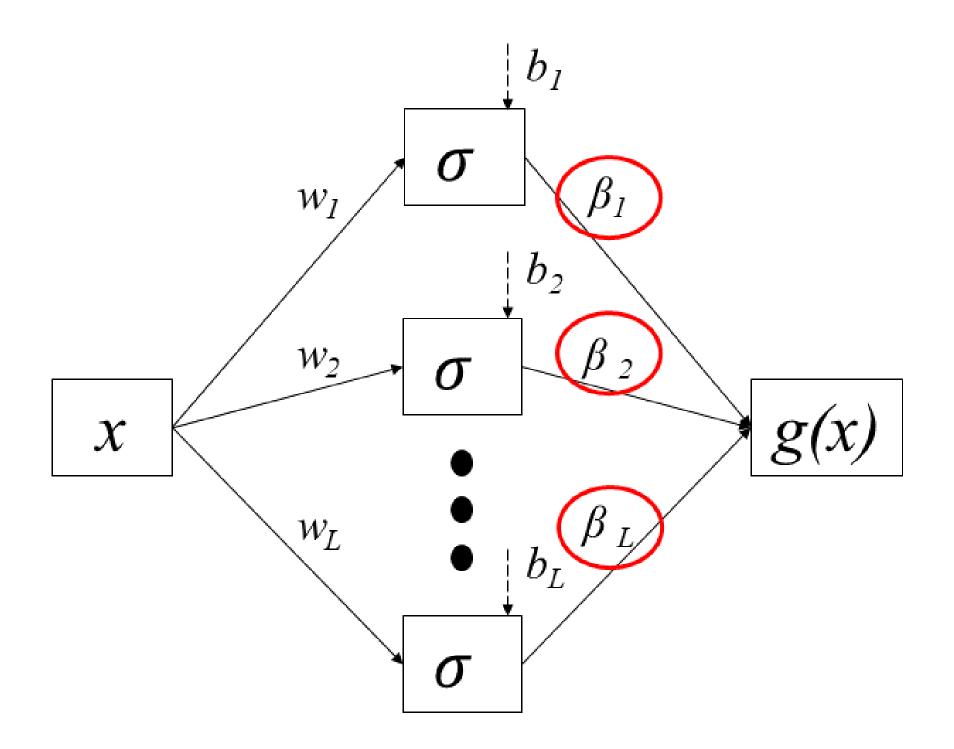
X-TFC approach to solving generic OCPs





ELM algorithm

- ELM is a training algorithm for SLNN that randomly selects input weights and bias, and computes the output weights via least-square
 - Input weights and bias are not tuned during the training
- The convergence of the ELM algorithm is proved by Huang et al. [2006]
 - The convergence is guaranteed for any input weights and bias randomly chosen to any continuous probability distribution



Feldbaum Problem: formulation

The Feldbaum Problem is a generic OCP that we have chosen as it has analytical solution. This allowed us to perform sensitivity analysis to check the accuracy and the robustness of the proposed physics-informed algorithm. The OCP is posed as following:

min
$$\mathcal{J} = \frac{1}{2} \int_0^1 (f^2 + u^2) dt$$

subject to

$$\dot{f} = \frac{df}{dt} = -f + u$$
$$0 \le t \le 1$$
$$f(0) = 1$$

will solve via X-TFC is:

$$\begin{cases} \dot{f} &= \frac{\partial H}{\partial \lambda} = -f - \lambda \\ \dot{\lambda} &= -\frac{\partial H}{\partial x} = \lambda - f \end{cases}$$
 s.t.
$$\begin{cases} f(0) = f_0 = 1 \\ \lambda(1) = \lambda_f = 0 \text{ (transversality condition)} \end{cases}$$

- The CEs and their derivatives are: \bullet
- $f = (\boldsymbol{\sigma} \Omega_1 \boldsymbol{h}_0)^{\mathrm{T}} \beta_f + \Omega_1 f_0 \qquad \dot{f} = b^2 \left[(\boldsymbol{\sigma}' \Omega'_1 \boldsymbol{h}_0)^{\mathrm{T}} \beta_f + \Omega'_1 f_0 \right]$ $\lambda = (\boldsymbol{\sigma} \Omega_1 \boldsymbol{h}_f)^{\mathrm{T}} \beta_\lambda + \Omega_1 \lambda_f \qquad \dot{\lambda} = b^2 \left[(\boldsymbol{\sigma}' \Omega'_1 \boldsymbol{h}_f)^{\mathrm{T}} \beta_\lambda + \Omega'_1 \lambda_f \right]$
 - The unknowns and the losses are:

Space Systems **Engineering Laboratory**

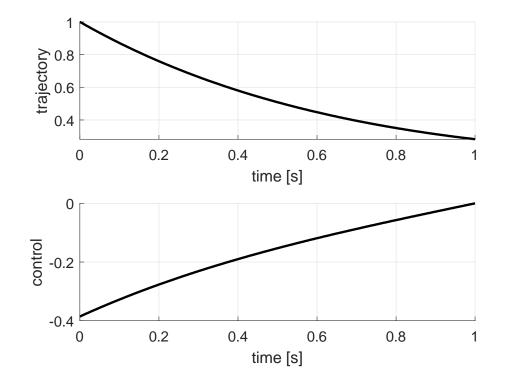
Applying the PMP the TPBVP that we

$$\boldsymbol{\beta} = \left\{ \boldsymbol{\beta}_{f} \quad \boldsymbol{\beta}_{\lambda} \right\}^{\mathrm{T}}$$
$$\mathcal{L}_{f} = \dot{f} + f + \lambda$$
$$\mathcal{L}_{\lambda} = \dot{\lambda} - \lambda + f$$

Feldbaum Problem: results

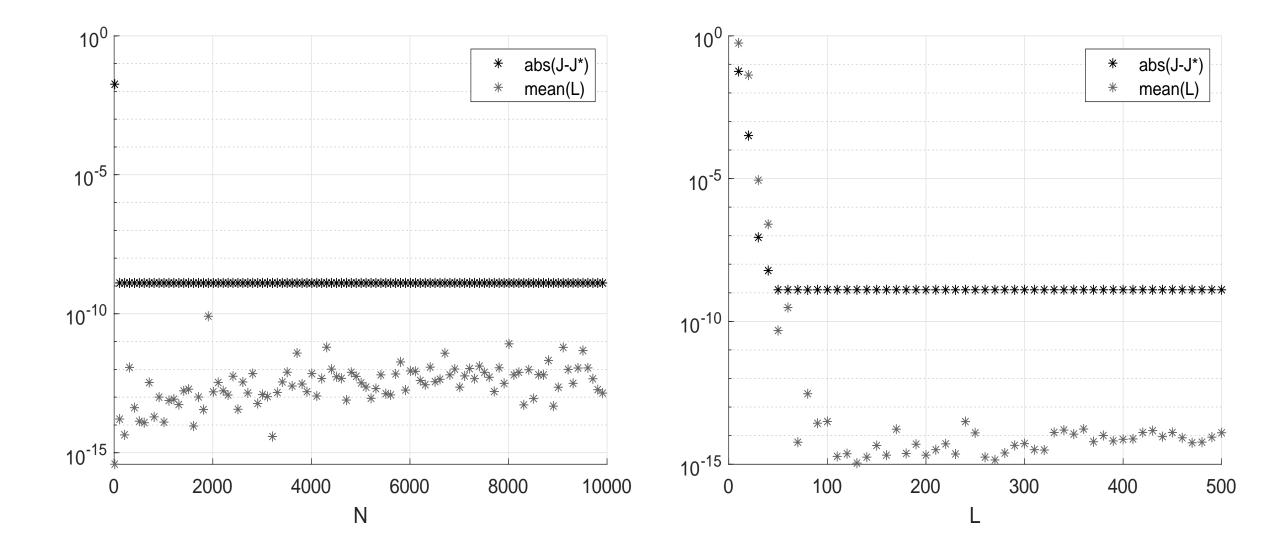
Time evolution of the state and control

Sensitivity analysis: fixed L = 100 (left), fixed N = 100 (right)



Performances analysis

N	L	CPU time [s]	$mean(\mathbb{L})$	$ \mathcal{J}-\mathcal{J}^* $
10	50	0.0007	4.9×10^{-16}	5.5×10^{-2}
10	90	0.0008	5.1×10^{-16}	6.5×10^{-3}
20	90	0.0008	5.6×10^{-16}	1.5×10^{-3}
50	90	0.001	5.6×10^{-16}	7.3×10^{-8}
200	90	0.004	8.3×10^{-15}	1.3×10^{-9}
500	90	0.006	8.7×10^{-14}	1.3×10^{-9}
100	20	0.0009	1.9×10^{-1}	1.7×10^{-2}
100	50	0.003	1.5×10^{-6}	8.9×10^{-9}
100	100	0.004	1.4×10^{-15}	1.3×10^{-9}
100	150	0.005	8.1×10^{-15}	1.3×10^{-9}
			0.11	2.0 20



Activation Function: Gaussian Input weights and bias sampled from: unif [-10,10]

Minimum Time - Energy Optimal **Intercept:** formulation

The minimum time-energy optimal intercept problem is posed as following:

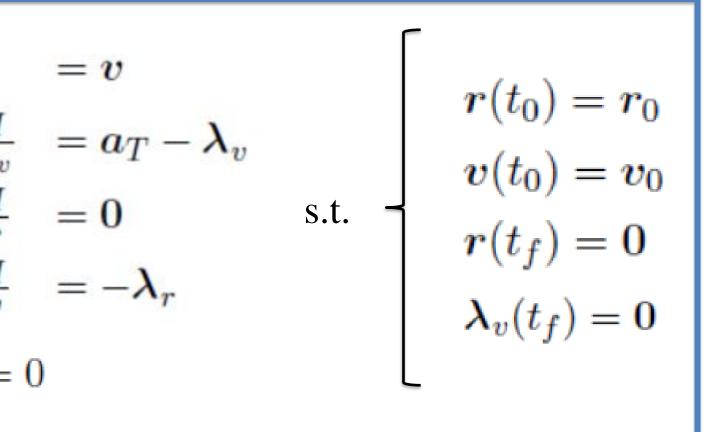
$$\min \quad \mathcal{J} = \Gamma t_f + \frac{1}{2} \int_{t_0}^{t_f} (a_M^T a_M) dt$$
$$\text{subject to} \quad \begin{cases} \dot{r} = v \\ \dot{v} = a_T - a_M \\ t_0 \le t \le t_f \\ r(t_0) = r_0 \\ v(t_0) = v_0 \\ r(t_f) = 0 \end{cases}$$

where **r** and **v** are the relative position and velocity vectors between the target and the interceptor, \mathbf{a}_{T} and \mathbf{a}_{M} are the commanded acceleration of the target and the interceptor, respectively.

$$\dot{r} = rac{\partial H}{\partial \lambda_r}$$

 $\dot{v} = -rac{\partial H}{\partial \lambda_v}$
 $\dot{\lambda_r} = -rac{\partial H}{\partial r}$
 $\dot{\lambda_v} = -rac{\partial H}{\partial r}$
 $H(t_f) + \Gamma = 0$

Applying the PMP (plus transversality conditions), we get the following TPBVP:



The TPBVP will be solved via X-TFC.

Minimum Time - Energy Optimal Intercept: formulation (cont'd)

The CEs and their derivatives are:

$$\begin{aligned} r_{j} &= \left(\sigma - \Omega_{1}\sigma_{0} - \Omega_{2}\sigma_{f} - \Omega_{3}\sigma_{0}'\right)^{\mathsf{T}}\beta_{j} + \Omega_{1}r_{0j} + \Omega_{2}r_{fj} + \frac{\Omega_{3}v_{0j}}{b^{2}} & \Xi = \left\{\beta_{r,1}\right\} \\ v_{j} &= b^{2} \left[\left(\sigma' - \Omega_{1}'\sigma_{0} - \Omega_{2}'\sigma_{f} - \Omega_{3}'\sigma_{0}'\right)^{\mathsf{T}}\beta_{j} + \Omega_{1}'r_{0j} + \Omega_{2}'r_{fj} + \frac{\Omega_{3}'v_{0j}}{b^{2}} \right] \\ a_{j} &= b^{4} \left[\left(\sigma'' - \Omega_{1}''\sigma_{0} - \Omega_{2}''\sigma_{f} - \Omega_{3}''\sigma_{0}'\right)^{\mathsf{T}}\beta_{j} + \Omega_{1}''r_{0j} + \Omega_{2}''r_{fj} + \frac{\Omega_{3}''v_{0j}}{b^{2}} \right] \\ v_{r,j} &= \sigma^{\mathsf{T}}\beta_{r,j} \\ v_{r,j} &= b^{2}\sigma'^{\mathsf{T}}\beta_{r,j} \\ v_{s,j} &= \left(\sigma - \sigma_{f}\right)^{\mathsf{T}}\beta_{s,j} + \lambda_{s} \\ v_{s,j} &= b^{2}\sigma'^{\mathsf{T}}\beta_{s,j} \end{aligned}$$

The σ are the activation functions of the SLNN that is trained via ELM, where $\boldsymbol{\beta}$'s are the *output weights* of the network.

The Ω 's are called switching functions, and their expression can be found in the manuscript.

The unknowns and the losses are:

 $\begin{array}{rcl} \mathcal{L}_{a,j} &=& a_j - a_{T,j} + \lambda_{v,j} \\ \mathcal{L}_{\lambda_{r,j}} &=& \dot{\lambda}_{r,j} \\ \mathcal{L}_{\lambda_{v,j}} &=& \dot{\lambda}_{v,j} + \lambda_{r,j} \\ \mathcal{L}_{\lambda_H} &=& \displaystyle{\sum_{j=1}^3 (\lambda_{r,j} v_j) + \Gamma} \end{array} \end{array}$

$$b^2 = c = \frac{z_f - z_0}{t_f - t_0}$$

Mapping coefficient from t in $[t_0; t_f]$ to z in $[z_0; z_f]$

Minimum Time – Energy Optimal Intercept: results

Performances analysis (Γ =1)

$$r_0 = [500, -600, -500] \text{ m}$$

 $v_0 = [-50, 60, 5] \text{ m/s}$
 $a_T = [1, -2, 0, 1] \text{ m/s}^2$ (assumed constant)

N	L	# of iterations	CPU time [s]	mean(L)	$mean(H + \Gamma)$	$H(t_f) + \Gamma$	t_f [s]	J
20	8	8	0.005	$2.2 imes 10^{-6}$	2.5×10^{-6}	1.3×10^{-9}	45.54	65.30
20	12	5	0.006	1.7×10^{-7}	3.9×10^{-5}	6.6×10^{-12}	45.54	65.30
20	16	9	0.01	1.3×10^{-9}	2.5×10^{-8}	7.3×10^{-12}	45.54	65.30
30	16	9	0.02	2.6×10^{-9}	$2.1 imes 10^{-7}$	6.2×10^{-13}	45.54	65.30
30	30	7	0.03	2.0×10^{-10}	7.4×10^{-8}	2.8×10^{-10}	45.54	65.30
30	30	7	0.03	2.0×10^{-10}	7.4×10^{-8}	2.8×10^{-10}	45.54	65.30

Activation Function: hyperbolic tangent Input weights and bias sampled from: unif [-1,1]

Space Systems Engineering Laboratory

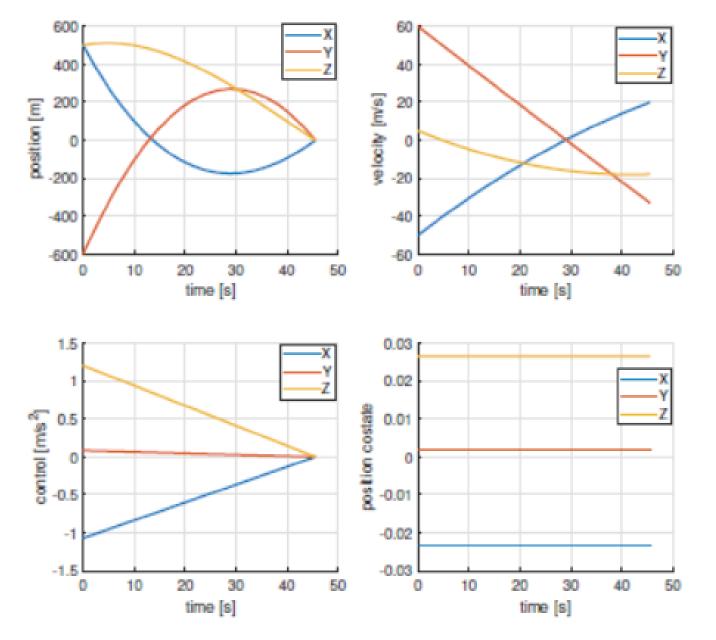
istant)

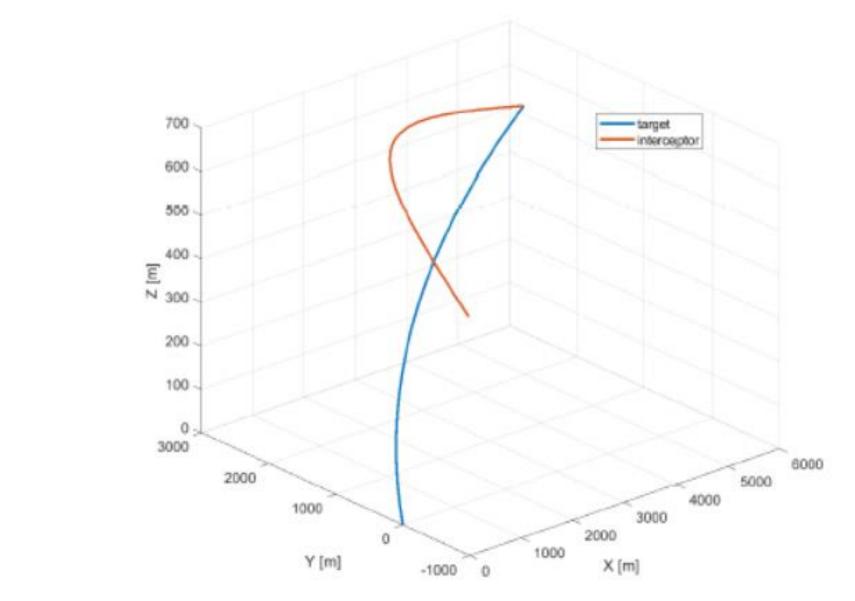
We compare our results with GPOPS. The results obtained with GPOPS were the following: tf = 45.54, $H(tf) + \Gamma = 2.35 \times 10^{-6}$, with a CPU time ~ 1.48 [s]

Minimum Time – Energy Optimal Intercept: results (cont'd)

Time evolution of the states and control

 $L_2 = 1.3 \times 10^{-9}$





Activation Function: hyperbolic tangent Input weights and bias sampled from: unif [-1,1] Number of points: 20 Number of neurons: 16

Space Systems Engineering Laboratory

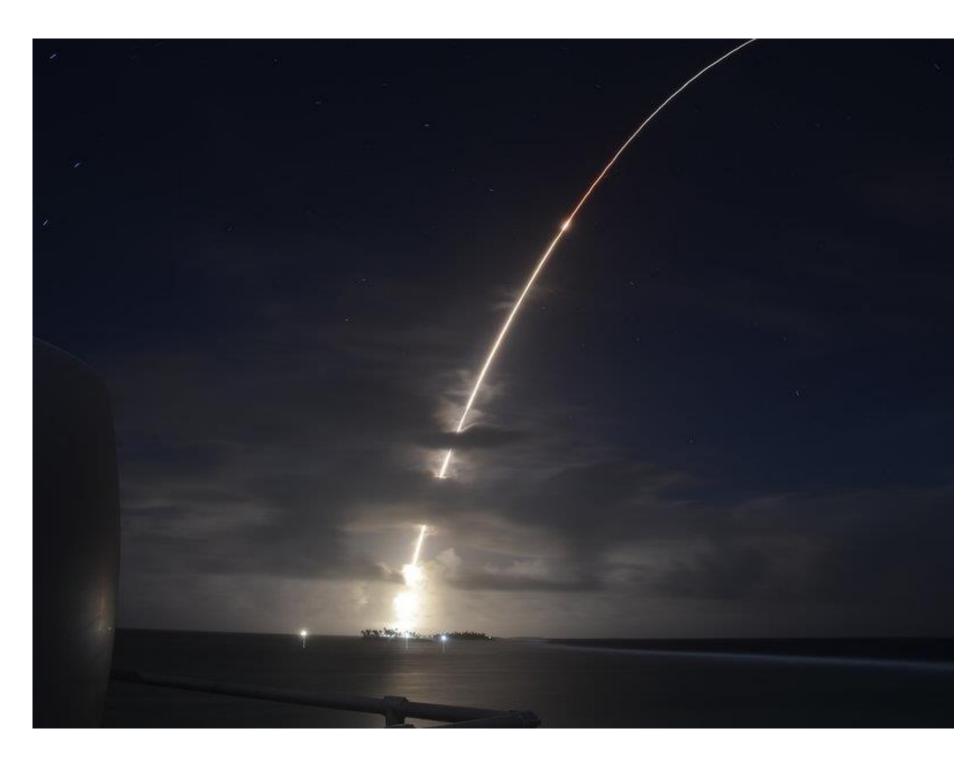
Optimal Trajectories

Conclusions and Outlooks

- We presented a new algorithm based on the newly developed Physics-Informed X-TFC for solving general OPCs.
 - The physics-informed X-TFC framework is used to solve the TPBVP arising from the application of the PMP.
- The algorithm was tested in designing minimum time energy optimal intercept trajectories.
 - The CPU time, in order of milliseconds, makes the proposed algorithm suitable for on board applications.
 - The performances are comparable with the state-ofthe-art software such as GPOPS II.
- Works are in progress to:

ullet

- Employing the physics-informed X-TFC based algorithm to tackle a wide variety of OPCs (especially OPCs for space guidance, navigation, and control).
- Use the ability of the X-TFC framework in solving PDEs with high accuracy with a low CPU time to perform real-time computation of closed-loop optimal control via the direct solution of the HJB equation



Thanks for watching =)

