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Introduction: Overview and Motivations

• Optimal intercept problems 
represent one of the most useful 
optimization problem in 
aerospace engineering.

• Optimal intercept problems are 
mainly related to missile 
guidance. 

• It is important to have robust
algorithms suitable for real-
time applications.



Introduction: Goals

• To employ Physics-Informed Neural Networks (PINN) to solve 

Optimal Control Problems (OPCs).

• To develop a new algorithm, suitable for on-board application, 

based on the newly developed Physics-Informed Extreme Theory 

of Functional Connections (X-TFC) [Schiassi et al. 2020] to 

compute optimal trajectories for intercept problems.

• The focus of this talk is to show the effectiveness of our X-TFC 

based algorithm in solving optimal control problems, focusing 

particularly to the solution of the optimal intercept problem.



PINN and OCPs

• Optimal Control Problems (OCPs) are 

generally hard and computationally 

expensive. In general, Open-Loop 

solutions can be found in two ways

• Direct Method: Transform a 

continuous problem in a finite NLP 

problems and find the minimum

• Indirect Method: Apply 

Pontryagin Minimum Principle 

(PMP) to derive the necessary 

conditions

• The solution of the OC 

reduces to the solution of a 

Two Point Boundary Value 

Problem (TPBVP) that is a 

systems of ODEsImage taken from: Lu, L., Meng, X., Mao, Z. and Karniadakis, G.E., 2019. 
DeepXDE: A deep learning library for solving differential equations.

arXiv preprint arXiv:1907.04502.

• (Data) + Neural Networks + Physics Laws = Physics-Informed 
Neural Networks (PINN)

• PINNs are a newly developed framework for solving DEs

• The physics laws (modeled via DEs), and eventually data, drive 
the training of the network 



• The Theory of Functional Connections (TFC) 
[Mortari, 2017] is a recently developed framework for 
functional interpolation

• The functions are approximated via a constrained 
expression 

• Sum of a free-chosen function and a 
functional that analytically satisfies the 
constraints

• TFC is applied to solve parametric DEs

• The free-chosen function is an expansion of 
Chebyshev polynomials 

• The constraints are the Initial/Boundary 
Conditions (IC or BC)

• The Physics-Informed Neural Network (PINN) 
Methods are a novel approach, coming from the 
Machine Learning community

• The DE latent solutions are approximated via a 
(Deep) Neural Network (NN), and the DEs drive 
the NN training (i.e. it acts as regulator)

Pros Cons

TFC
(w/Cheb. Pol.)

• ICs/BCs always 

analytically satisfied

• Accurate Solutions

• Low Computational 

Time

• Non-linear problems 

can be very sensitive 

to the initial guesses

• It suffers of the curse 

of dimensionality 

when solving 

ODE/PDE problems 

PINN

• Expanding the latent 

solution via NN 

allows to apply this 

method to solve high 

order PDEs (e.g. no 

curse of 

dimensionality)

• Many training points 

required for high 

accuracy (ICs/BCs 

not analytically 

satisfied)

• Computational 

expensive when 

gradient-based

methods are used to 

train the NN

New Methods for Solving DEs



• The Physics-Informed Extreme Theory of Functional Connections (X-TFC) is a synergy of the TFC and the standard 

PINN methods that helps to overcome their limitations for solving DEs

• X-TFC uses the TFC constrained expression where the free-chosen function is a Single Layer Feedforward 

NN (SLNN) trained via Extreme Learning Machine (ELM) Algorithm [Huang et al., 2006] 

New Methods for Solving DEs (cont’d)



X-TFC approach to solving generic DEs



X-TFC approach to solving generic OCPs



• ELM is a training algorithm for 
SLNN that randomly selects 
input weights and bias, and 
computes the output weights via 
least-square

• Input weights and bias are 
not tuned during the training

• The convergence of the ELM 
algorithm is proved by Huang et 
al. [2006]

• The convergence is 
guaranteed for any input 
weights and bias randomly 
chosen to any continuous 
probability distribution

ELM algorithm 



Feldbaum Problem: formulation

• The Feldbaum Problem is a generic OCP 

that we have chosen as it has analytical 

solution. This allowed us to perform 

sensitivity analysis to check the accuracy 

and the robustness of  the proposed 

physics-informed algorithm. The OCP is 

posed as following:

• Applying the PMP the TPBVP that we 

will solve via X-TFC is:

s.t. 

• The CEs and their derivatives are:

• The unknowns and the losses are:



Feldbaum Problem: results
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Time evolution of the state and control Sensitivity analysis: fixed L = 100 (left), fixed N = 100 (right)

Performances analysis

Activation Function: Gaussian
Input weights and bias sampled from: unif [-10,10]



Minimum Time - Energy Optimal 
Intercept: formulation

• The minimum time-energy optimal 

intercept problem is posed as following:

• Applying the PMP (plus transversality conditions), 

we get the following TPBVP:

where r and v are the relative position and

velocity vectors between the target and the

interceptor, aT and aM are the commanded

acceleration of the target and the interceptor,

respectively.

s.t. 

• The TPBVP will be solved via X-TFC.



Minimum Time - Energy Optimal 
Intercept: formulation (cont’d)

• The CEs and their derivatives are: • The unknowns and the losses are:

Mapping coefficient from t in 

[t0; tf] to z in [z0; zf]

The Ω’s are called switching functions, and their 

expression can be found in the manuscript.

The 𝝈 are the activation functions of the SLNN that is trained 

via ELM, where 𝜷’s are the output weights of the network.



Minimum Time – Energy Optimal Intercept: 
results

Performances analysis (𝚪=1)

Activation Function: hyperbolic tangent

Input weights and bias sampled from: unif [-1,1]

We compare our results with GPOPS. The results 

obtained with GPOPS were the following: tf = 45.54, 

H(tf) + 𝚪 = 2.35 x 10-6, with a CPU time ~ 1.48 [s]

r0 = [500, -600, -500] m

v0 = [-50, 60, 5] m/s

aT = [1, -2, 0,1] m/s2 (assumed constant)



Minimum Time – Energy Optimal 
Intercept: results (cont’d)

Time evolution of the states and control Optimal TrajectoriesL2 = 1.3 x 10-9

Activation Function: hyperbolic tangent
Input weights and bias sampled from: unif [-1,1]

Number of points: 20
Number of neurons: 16



Conclusions and Outlooks

• We presented a new algorithm based on the newly 
developed  Physics-Informed X-TFC for solving general 
OPCs.

• The physics-informed X-TFC framework is used to 
solve the TPBVP arising from the application of the 
PMP.

• The algorithm was tested in designing minimum time –
energy optimal intercept trajectories.

• The CPU time, in order of milliseconds, makes the 
proposed algorithm suitable for on board applications.

• The performances are comparable with the state-of-
the-art software such as GPOPS II.

• Works are in progress to:

• Employing the physics-informed X-TFC based 
algorithm to tackle a wide variety of OPCs (especially 
OPCs for space guidance, navigation, and control).

• Use the ability of the X-TFC framework in solving 
PDEs with high accuracy with a low CPU time to 
perform real-time computation of closed-loop optimal 
control via the direct solution of the HJB equation



Thanks for watching =)


