Brian Gaudet

Research and Development Engineer

1130 Swall Meadows Rd, Bishop CA 93514

Biran Gaudet's research focus is the application of Deep Reinforcement Meta-Learning to guidance and control for hypersonic strike weapons (HSW), including multi-agent meta-RL to learn a targeting policy for a hypersonic strike force consisting of multiple HSW that is tasked with destroying multiple mobile targets implementing defense systems.

Degrees

  • BSc, Electrical Engineering, The University of Arizona (1992)

 


Publications

Journal Articles

  • Gaudet, B., Furfaro, R., & Linares, R. (2020). Reinforcement learning for angle-only intercept guidance of maneuvering targets. Aerospace Science and Technology99, 105746. DOI: https://doi.org/10.1016/j.ast.2020.105746 
  • Gaudet, B., Furfaro, R., Linares, R. and Scorsoglio, A., 2020. Reinforcement Metalearning for Interception of Maneuvering Exoatmospheric Targets with Parasitic Attitude Loop. Journal of Spacecraft and Rockets, pp.1-14.
  • Gaudet, B., Linares, R., & Furfaro, R. (2020). Six degree-of-freedom body-fixed hovering over unmapped asteroids via LIDAR altimetry and reinforcement meta-learning. Acta AstronauticaDOI: https://doi.org/10.1016/j.actaastro.2020.03.026 
  • Gaudet, B., Linares, R., & Furfaro, R. (2020). Deep Reinforcement Learning for Six Degree-of-Freedom Planetary Landing. Advances in Space ResearchDOI: https://doi.org/10.1016/j.asr.2019.12.030 
  • Gaudet, B., Linares, R., & Furfaro, R. (2020). Terminal adaptive guidance via reinforcement meta-learning: Applications to autonomous asteroid close-proximity operations. Acta AstronauticaPDF
  • Gaudet, B., Linares, R. and Furfaro, R., 2020. Adaptive guidance and integrated navigation with reinforcement meta-learning. Acta Astronautica169, pp.180-190.  DOI: 10.1016/j.actaastro.2020.01.007
  • Furfaro, R., Wibben, D.R., Gaudet, B. and Simo, J., 2015. Terminal multiple surface sliding guidance for planetary landing: development, tuning and optimization via reinforcement learning. The Journal of the Astronautical Sciences62(1), pp.73-99. DOI: 10.1007/s40295-015-0045-1
  • Gaudet, B. and Furfaro, R., 2014. Adaptive pinpoint and fuel efficient mars landing using reinforcement learning. IEEE/CAA Journal of Automatica Sinica1(4), pp.397-411. DOI: 10.1109/JAS.2014.7004667

Conference Papers

  • Gaudet, B., Linares, R., & Furfaro, R. (2020). Six Degree-of-Freedom Hovering over an Asteroid with Unknown Environmental Dynamics via Reinforcement Learning. In AIAA Scitech 2020 Forum (p. 0953). DOI: https://doi.org/10.2514/6.2020-0953 
  • Scorsoglio, A., Furfaro, R., Linares, R., & Gaudet, B. (2020). Image-based Deep Reinforcement Learning for Autonomous Lunar Landing. In AIAA Scitech 2020 Forum (p. 1910). DOI: http://dx.doi.org/10.2514/6.2020-1910
  • Gaudet, B., & Furfaro, R. (2014). Real-time state estimation for asteroid close-proximity operations via lidar altimetry and a particle filter. In 2013 AAS/AIAA Astrodynamics Specialist Conference, Astrodynamics 2013. Univelt Inc.
  • Gaudet, B., and Furfaro, R., "A navigation scheme for pinpoint mars landing using radar altimetry, a digital terrain model, and a particle filter." Proc. AAS/AIAA Astrodynamics Specialist Conf.. 2013
  • Gaudet, B. and Furfaro, R., 2013. Real-time state estimation for asteroid close-proximity operations via lidar altimetry and a particle filter. In 2013 AAS/AIAA Astrodynamics Specialist Conference, Astrodynamics 2013.
  • Gaudet, B. and Furfaro, R., 2013. ZEM/ZEV guidance approach for asteroid touch-and-go sample collection maneuvers. Advances in the Astronautical Sciences148(897914), p.17.
  • Gaudet, B. and Furfaro, R., 2013. Estimation of asteroid model parameters using particle filters. In 23rd AAS/AIAA Space Flight Mechanics Meeting, Spaceflight Mechanics 2013 (pp. 915-932). Univelt Inc.
  • B. Gaudet, R. Furfaro, “Missile Homing-Phase Guidance Law Design using Reinforcement Learning”, AIAA-2012-4470, AIAA GNC/AFM/MST/ASC 2012
  • B. Gaudet, R. Furfaro, “Robust Spacecraft Hovering Near Small Bodies in Environments with Unknown Dynamics using Reinforcement Learning”, AIAA-2012-5072, AIAA GNC/AFM/MST/ASC 2012

 


Preprints

  • Gaudet, B., Furfaro, R., Linares, R., & Scorsoglio, A. (2020). Reinforcement Meta-Learning for Interception of Maneuvering Exoatmospheric Targets with Parasitic Attitude Loop. arXiv preprint arXiv:2004.09978PDF
  • Gaudet, B., 2020. Adaptive Scale Factor Compensation for Missiles with Strapdown Seekers via Predictive Coding. arXiv preprint arXiv:2009.00975.
  • Gaudet, B., Linares, R., & Furfaro, R. (2019). Six Degree-of-Freedom Hovering using LIDAR Altimetry via Reinforcement Meta-Learning. arXiv preprint arXiv:1911.08553PDF
  • Gaudet, B., Linares, R. and Furfaro, R., SIX DEGREE-OF-FREEDOM HOVERING USING LIDAR ALTIMETRY VIA REINFORCEMENT LEARNING. DOI: 10.13140/RG.2.2.31333.35041
  • Gaudet, B., Linares, R. and Furfaro, R., SEEKER BASED ADAPTIVE GUIDANCE VIA REINFORCEMENT META-LEARNING APPLIED TO ASTEROID CLOSE PROXIMITY OPERATIONS. DOI: 10.13140/RG.2.2.12772.32642/1
  • Gaudet, B., Furfaro, R. and Linares, R., 2020. A guidance law for terminal phase exo-atmospheric interception against a maneuvering target using angle-only measurements optimized using reinforcement meta-learning. In AIAA Scitech 2020 Forum (p. 0609). DOI: 10.13140/RG.2.2.11356.74883
  • Gaudet, B., Linares, R. and Furfaro, R., 2020. Adaptive guidance and integrated navigation with reinforcement meta-learning. Acta Astronautica169, pp.180-190. DOI: 10.13140/RG.2.2.24778.52164
  • Gaudet, B., Linares, R. and Furfaro, R., 2019. Learning Accurate Extended-Horizon Predictions of High Dimensional Trajectories. arXiv preprint arXiv:1901.03895.
  • Gaudet, B., Linares, R. and Furfaro, R., 2018. Deep reinforcement learning for six degree-of-freedom planetary powered descent and landing. arXiv preprint arXiv:1810.08719.
  • Gaudet, B., Linares, R. and Furfaro, R., 2018, January. Integrated guidance and control for pinpoint mars landing using reinforcement learning. In AAS/AIAA Astrodynamics Specialist Conference (pp. 1-20). DOI: 10.13140/RG.2.2.23932.85121